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Introduction - Deep Neural Networks

Applications of deep learning in medical imaging

* Reconstruction

Sun, Jian, et al. "Deep ADMM-net for compressive sensing MRI."
Advances in Neural Information Processing Systems. 2016.
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Strong expression power
* Good approximation of most complicated functions

Supervised Learning (pop)

e Large Training Data with Labels

* Annotation is bottle neck
Unsupervised Learning

* Large Training Data without Label (pop)

* Single Training Data (same subject) w/o Label
Semi-supervised Learning

Structure
e ResiNET
e U-NET

Not Covered
* MRI/CT
e System modeling
* PET corrections (Attn, Scatters)
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.I Introduction — Image Reconstruction
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.I Outline

* Population based methods:
* DL in penalty function
e Kernel based method

* Personalized methods
e Conditional deep image prior
* Denoising
e Static and parametric image recon
* Noise2noise
* Denoising
» Static image recon

* Population based + Personalized



.I DL based PET Recon

 To improve PET image quality, various penalized methods have been
proposed (Gindi et al 1993, Somayajula et a/ 2011)
e Convolutional neural networks (CNNs) are effective methods to
improve medical image quality
* Denoising (Chen et al 2017, Kang et al 2017)
* Cons: Smoothing out image details

* Plug-and-play or UnroIIing (Venkatakrishnan et al 2013, Sun et al 2016, Diamond et
al 2017)

* (Cons: Time consuming in training
 Penalized reconstruction (Wu et a/ 2018, Kim et al 2018)
* (Cons: Adjusting penalty parameter

AAPI\/I-t
» Noise levels in training & testing should be the same

V= VV CU Ul &V L7)
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.I Preliminary reconstruction tests

 We first tried...

Lix) + g“x - x| < /¢ (a; x™) +§\|x —a\z

Majorizer by SQS DnCNN image

1. Calculate x? once from x°(0sem image)

« Guarantee convergence

* No improvement compared to denoising
2. Calculate x = DnCNN (x™) in iteration

e After certain # iterations, image suddenly get
blurred significantly (out of noise boundary)



.I Local linear fitting

 Local linear fitting (LLF): patch based linear fitting

lterative reconstruction

Low dose image: x

Local Linear
Fitting (LLF)

Cost function is the same as Guided filtering (K. He, 2013)

K. Kim, ... Q. Li, IEEE Transactions on Medical Imaging, vol. 37, pp 1478-1487, 2018



.I Simulation results
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K. Kim, ... Q. Li, IEEE Transactions on Medical Imaging, vol. 37, pp 1478-1487, 2018
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.I Image Model

= Forimage reconstruction inverse problems,

y=Px+r

= Change o be the output of a network f(z|0),

= —
i e Z isthe input to the network, unknown parameters. I
- « 0 = |w, b] are the parameters of the network, pre-trained using low-dose and |
| high-does pairs.

e e e i 1
= Based on the distribution of the measurement data,

z= arg;llaxL(y|f(Z|9)) (1)

* Directly optimizing (1) is difficult as the projector is coupled with network
output

K. Gong, ..., Q. Li, IEEE transactions on medical imaging 38 (3), 675-685
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.I Network Structure
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* 3D U-net was employed as the network structure, pretrained
using high-quality training pairs.

K. Gong, ..., Q. Li, IEEE transactions on medical imaging 38 (3), 675-685



.I Result: lung dataset
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* Proposed Iterative CNN can have higher uptake in synthetic tumor and lower noise
Acquired from GE Discovery 690 PET-CT

K. Gong, ..., Q. Li, IEEE transactions on medical imaging 38 (3), 675-685
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t: brain datasets

e Acquired from GE Signa PET-MR

High Count EM-+filter Fair Penalty Dictionary learningCNN Denoising |lterative CNN
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High Count EM-+ilter Fair Penalty Dictionary learningCNN Denoising |lterative CNN

Fair Penalty

lterative CNN

* Proposed Iterative CNN can have higher uptake in synthetic tumor and lower noise
K. Gong, ..., Q. Li, IEEE transactions on medical imaging 38 (3), 675-685
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.I Result: quantification

Lung data set Brain data set
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* Proposed Iterative CNN can have better quantification regarding bias-variance trade-
off.

K. Gong, ..., Q. Li, IEEE transactions on medical imaging 38 (3), 675-685
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.I Outline

* Population based methods:
* DLin penalty function
e Kernel based method

* Personalized methods
* Conditional deep image prior
* Denoising
e Static and parametric image recon
* Noise2noise
* Denoising
» Static image recon

* Population based + Personalized



a0
=

.I Method: Deep Image Prior

* Deep image prior framework (uiyanov et a1 2017) shows that CNN can learn
intrinsic structures from corrupted images.

* |ttries to restore clean image from its corrupted version by only
employing random noise as network input

6" = argmin|lmo — (0]2)2 ' = /(6"]2)
V)
Corrupted image I —-I--I: Restored image
Network parameters Network input

Label: Corrupted |mage Lo Convolutional

Neural Network N :
- » Restored image I~

Input: Random noise Z /

K. Gong, ... Q. Li, IEEE Transactions on Medical Imaging, Dec, 2018
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.IProposed Method
f(6]z): untrained modified 3D Unet?

* Denoising process: 6: network parameters
b = arg min||x, — £(6]2)|| . Z inpgt (co-registered C_T/_MR iImage)
R 0 Xo. Noisy PET image (training label)
x=f(0]z) %: denoised PET image
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Optimization algorithm:
L-BFGS

[2] Cigek, Ozgun, et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." International Conference on Medical Image .
Computing and Computer-Assisted Intervention. Springer, Cham, 2016. J. Cui, ..., Q. Li, IEEE MIC 2018
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J. Cui, ..., Q. Li, IEEE MIC 2018
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.IResuIts - CNR improvement ratio
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CNR improvement ratios for 7 patients data sets

J. Cui, ..., Q. Li, IEEE MIC 2018
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.I Image Model

* For image reconstruction inverse problems,

y=Px+r

* Change x to be the output of a network f(z|0),

* z isthe input to the network. Here we use prior information as input.

* 0 = [w, b] are the parameters of the network.

. Based on the distribution of the measurement data,

A

0 = arg;naxlz(y!f(ﬂﬁ’)) + R(0) (1)

* Directly optimizing (1) is difficult as the projector is coupled with network
output

K. Gong, ... Q. Li, IEEE Transactions on Medical Imaging, Dec, 2018
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.I Network Structure

16 16 16 16

Input Output

192 x 192 x 128
192 x 192 x 128

96 x 96 x 64
96 x 96 x 64

mm) Conv+BN+LRelU

m=) Conv_Stride2+BN+LRelLU
=) Bilinear Upsampling

D= Copy and add

48 x 48 x 32

K. Gong, ... Q. Li, IEEE Transactions on Medical Imaging, Dec, 2018
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.I 3D Simulation

Ground Truth

EM + filter KMRI Proposed

Ground Truth EM + filter KMRI Proposed

Ground Truth EM + filter KMRI Proposed

K. Gong, ... Q. Li, IEEE Transactions on Medical Imaging, Dec, 2018
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.I CRC-STD Quantification
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K. Gong, ... Q. Li, IEEE Transactions on Medical Imaging, Dec, 2018



.I Network Structure

3D modified U-net structure (rRonneberger et a/ 2015) is employed as part of
the network f(0]z, A, K) :
Backpropagation of the Kernel matrix layer is K'2

Patlak layer is 1x 1 x 2 convolution.

U-Net

Kernel matrix layer

}

N

128 x 128 x 96

16 16

-

64 x 64 x 32

?E

Input:

MR prior images

16 32 32

32 32

3

32x32x16
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128 4

5-5-5

32 32

- i

64 x 64 x 32

m {’ ggﬁ Conv+BN+LReLU

=) Conv_Stride2+BN+LRelU
=) Bilinear Upsampling
n% Copy and add

- I

J

192x 192 x 128 x 2

Patlak Model

[:Eta L1y wt+4]

Output: time activity
images:

128 x 128 x 96 x 5

Patlak Convolutional Layer:

xr = (A@IN)Q

Output: Patlak Slope and [k b]
Patlak Intercept images L3

$S67, K. Gong, ..., Q. Li, SNMMI 2019
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.ICIinicaI Data Results
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.I Method: Deep Image Prior

* Unlike natural images, prior images of the same subject, instead of
random noise, can be employed as network input, which should
further improve the results.

* Instead of using the corrupted image as training labels, sinogram data
can be utilized as training labels and training function can be
formulated based on maximum likelihood (Gong et al 2018).

a b C
(a) Denoising with random (b) Denoising with MR prior as (c) Reconstruction with MR
noise as network input network input prior as network input

K. Gong, ... Q. Li, IEEE Transactions on Medical Imaging, Dec, 2018
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.I Outline

* Population based methods:
* DLin penalty function
e Kernel based method

* Personalized methods
* Conditional deep image prior
* Denoising
e Static and parametric image recon
* Noise2noise
* Denoising
* Static image recon

* Population based + Personalized



.I NoiseZ2noise training

* Motivation

* Under some circumstances we do not have access to high-quality images
* Dynamic imaging: PET kinetics, CT perfusion, Material images of spectral CT, etc.

* Noise2noise (Lehtinen et al. 2018)
* Using labels with another noise realization is equivalent to using clean labels.

e Conventional training Conventional

Noise2noise

N
1
®. = argmin N E Hf(Xz + n;; 9) - Xz‘”gv
© i=1

* X; - hoiseless image; n; - noise.

e Noise2noise training
N

1
On = argumin 7 3£ Gxi 1113 ©) — (xi + ni2);.
* n;, - hoise realization 1; n;, - noise realization 2.
* The only difference is that training label has noise.
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I PET Denoising

* Motivation

* Under some circumstances we do not have access to high-quality images
* Dynamic imaging: PET kinetics, CT perfusion, Material images of spectral CT, etc.
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with different hyperparameters of TIPS and

Fig. 1. Denoising results of the 'O water PET time frames and averaged K1 images from three Noise2Noise.

injections.The primary tumor is pointed by the black arrows. A metastasis is pointed by the red arrows,
which is almost smoothed out in the TIPS results. The hyperparameters for TIPS and Noise2Noise were
chosen based on visual appearance. The display windows for time frames and K, are [0, 7.5%10°] Bq/ml
and [0, 0.04] s”', respectively.
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.I Outline

* Population based methods:
* DLin penalty function
e Kernel based method

* Personalized methods
e Conditional deep image prior
* Denoising
e Static and parametric image recon
* Noise2noise
* Denoising
» Static image recon

* Population based + Personalized
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.I Proposed Method
» Pre-training
HO = arg mln”xtram f(glatrain))llz

f: untrained modified 3D Unet
0: network parameters
a4 training input ( )

x§F*M: noisy PET images (training labels)

=) Conv+BN+LRelU
Conv_Stride2+BN+LRelLU

Bilinear Upsampling

®» Copy and add

CT/MR images
atram

Cicek, Ozgiin, et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, Cham, 2016.



.I PrOpOSEd Method « f: modified 3D Unet?

» Fine-tune process : * f,: pre-trained network parameters( fixed 657"
6" = arg mm”xtest f(gupwgown’atest)” o al®St:testinput (co-registered CT/MR image)

A te“ - noisy PET image (test label
et = f (guplgdown’ateSt) teSt. denglsed PET ?magje )
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[2] Cicek, Ozguin, et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." International Conference on Medical Image L' B FG S

Computing and Computer-Assisted Intervention. Springer, Cham, 2016.
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B |Results — PET/CT

m Gaussian B NLM withCT = CDIP mProposed
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The proposed method has the highest CNR among most patients.



[Results-PET/MR
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M Results — PET/MR

m Gaussian = NLM with MR = CDIP mProposed
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The proposed method has the highest CNR among most patients.
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