Deep Learning in Quantitative SPECT and PET Image Reconstruction and Processing

Chi Liu, PhD
Associate Professor
Radiology and Biomedical Imaging
Biomedical Engineering
Yale University

Outline

- SPECT
 - Attenuation Map Generation
 - Attenuation Correction
- PET
 - Denoising
 - Motion Correction
 - Multi-tracer Image Generation

Background and Motivation

Accurate attenuation correction (AC) is essential for SPECT

Daisuke Utsunomiya, et al. Object-specific Attenuation Correction at SPECT/CT in Thorax: Optimization of Respiratory Protocol for Image Registration

 $http://www.people.vcu.edu/\sim mhcrosthwait/clrs 318 web/AC\% 20 and \% 20 transmission \% 20 applicatiin.html$

GAN Training and Human Studies

- Generator : U-net 3D
- Discriminator: CNN 3D
- 65 patient studies from YNHH
- Cardiac SPECT with 99mTc-tetrofosmin and attenuation CT scans
- GE Discovery NM/CT 850

o Primary: 126 keV-155 keV

Scatter: 114 keV-126 keV

window (114keV-126keV) primary window (126keV-155keV)

Impact of Multi-channel Inputs and GAN

- Inaccurate body boundary recovery and artifacts (red arrows) were observed in GAN-P and UNET-P's results
- Incorrect blood vessel shape was observed (yellow arrows) in the results from GAN-S and UNET-S
- When using only the primary window as input, GAN obtained much better result than U-net

Visual comparison of GAN and U-Net using different inputs: both primary and scatter windows (PS), primary window alone (P) and scatter window alone (S).

Evaluation

Metric	GAN-PS	GAN-P	GAN-S	UNET-PS	UNET-P	UNET-S
%NMAE-μ	3.60±0.85	5.12±1.03	3.62±0.86	3.60±0.85	24.3±1.76	3.65±0.82
MSE-μ	189±89	270±123	192±94	185±92	2594±207	190±89
%NMAE-λ	0.26±0.15	0.30±0.17	0.27±0.16	0.26±0.15	0.92±0.48	0.27±0.16
%Bias $_{myo}$	3.48 = 2.05	5.75±3.39	4.36 = 2.54	3.81 = 2.13	37.9±9.84	3.67 = 2.45
%Bias _{blp}	2.43±1.42	4.34±3.04	2.69±2.06	2.49±1.52	31.5±9.08	2.46±1.86
·						

- UNET-P produced the worst results
- The GAN counterpart (GAN-P) produced more stable results
- The GAN-PS, GAN-S, UNET-PS and UNET-S methods obtained similar NMAE and MSE on the generated attenuation maps (μ) and attenuation corrected SPECT images (λ).
- GAN-PS achieved the lowest ROI bias among all the methods
- For both GAN and U-net, the STD of bias are much lower when both primary and scatter windows were used as input, compared with the results based only on scatter input.

PET dose reduction

Comparison with existing denoising methods

Full Dose PET

Nstd image

Mean image

Difference image

Comparison with existing denoising methods

■ 10 patients with CT image and visible nodule in CT image

Patch: $64 \times 64 \times 16$

Input channel: 1

Patch: $64 \times 64 \times 16$ Output channel:1

Patch: $64 \times 64 \times 16 \times 2$

Input channel: 2

Patch: $64 \times 64 \times 16$

Output channel:1

Patient 4 Slice 190

■ Nodule bias reduces with well-registered CT information

Patient 1 Slice 213

Patient 1 Slice 217

PennPET Explorer: Human studies

Studies performed with IRB protocol with informed consent

- CT from commercial PET/CT
 - Light restraint of arms and head to aid alignment
 - Register (rigid-body) to non-AC image

- 3 Rings: 70 cm axial length
- Spatial resolution: 4 mm
- TOF resolution: 250 ps
- Sensitivity: 55 kcps/MBq (permits low dose, fast, and late imaging)

Physics & Instrumentation Group

PennPET Explorer human studies

 Two subjects were injected with 15 mCi FDG and scanned in a single bed position on PennPET Explorer scanner.

Generate virtual-high-count late and ultra-late images

- No high-count label images of late and ultra-late scans
 - Can we use the high-count early images to train the network?
 - Is the denoising performance affected by FDG distribution?

Early Late Ultra-late

Image were normalized according to liver uptake

Is denoising performance affected by FDG distribution?

Training network #1 using late scan of subject A

Testing network #1 and #2 using late scan of subject B

Image results: is denoising performance affected by FDG distribution?

Quantification results: is denoising performance affected by FDG distribution?

Lata assu	Noise (std/mean)		CNR				
Late scan	Liver	Cerebellum	Bone marrow	Myocardium	Aorta wall	Inflammation	Inflammation
100% count	0.20	-	-	-	-	-	6.9
25% count	0.37±0.01	0%±1%	-1%±3%	0%±0%	-1%±0%	-1%±2%	3.7±0.1
Denoised 25% (trained with late scan)	0.10±0.002	-2%±1%	-3%±2%	-1%±0%	-3%±0%	-2%±2%	13.1±0.2
Denoised 25% (trained with early scan)	0.10±0.002	-2%±0%	-4%±2%	-1%±0%	-4%±0%	-4%±2%	12.5±0.4

Generate virtual-high-count late image

Training using early scan of subject A

Results: generate virtual-high-count late image

Late scan	Noise (std/mean)		CNR				
Late Staff	Liver	Cerebellum	Bone marrow	Myocardium	Aorta wall	Inflammation	Inflammation
100% count	0.20	-	-	-	-	-	6.9
Virtual-high- count	0.07	0%	-1%	-1%	-3%	-2%	18.1

Generate virtual-high-count ultra-late image

Training using early scan of subject A

Results: generate virtual-high-count ultra-late image

100% count (ultra-late scan)

Virtual-high-count (ultra-late scan)

100% count (ultra-late scan)

Virtual-high-count (ultra-late scan)

100% count (ultra-late scan)

Virtual-high-count (ultra-late scan)

Ultra-late	Noise (std/mean)	Relative bia	CNR		
scan	Liver	Bone marrow	Myocardium	Inflammation	Inflammation
100% count	1.08	-	-	-	3.1
Virtual-high- count	0.04	-5%	1%	-25%	53.4

Limitation for Non-FDG tracers

- Tracer with short half-lives
 - O-15: 122.2 s
 - Rb-82: 76.4 s
- Tracer with long half-lives
 - Zr-89: 3.27 days
- Full dose images may not be available!
- New tracers
- Uncommonly used tracers
- Training dataset may not be sufficient!

Full Dose

Low Dose

Training and testing: Single bed

Fine tune: only the first layer and final layer would be updated.

For Fine-tuned U-Net and U-Net trained by FMISO: Leave out cross-validation approach was used.

Sample slices: Single bed FMISO

The de-noised image with the three U-Nets are comparable!

Whole body FDG and DOTATATE

Fine tune: only the first layer and final layer would be updated.

For Fine-tuned U-Net and U-Net trained by DOTA: Leave out cross-validation approach was used. .

Sample slices: Whole body DOTATATE

Cross-tracer & cross-protocol transfer learning

U-Net trained by 12 DOTA was used as reference.

For Fine-tuned U-Net and U-Net trained by 3 DOTA: Leave out cross-validation approach was used.

Cross-tracer & cross-protocol transfer

Brain PET Imaging

• Positron Emission Tomography (PET) imaging is increasingly employed in AD studies to measure β -amyloid, tau protein, glucose metabolism, synaptic vesicle glycoprotein 2A (SV2A) and so on.

Isotope	Tracer	Tracer Description
¹⁸ F	FDG	glucose metabolism
¹⁸ F	AV-1451	tau imaging agent
¹¹ C	PiB	β-amyloid
¹¹ C	UCB-J	Synaptic Vesicle 2A (SV2A) ligand

Static Images of four tracers from One AD Patient

Static Image Prediction

Network #1: SUVR->SUVR

Network #2: K_i ratio->SUVR

SUVR -> SUVR VS K_i ratio -> SUVR

Mean bias across all the 18 ROI

Network	$Mean \underline{+} SD$
SUVR->SUVR	-0.4% <u>+</u> 6.8%
K _i ratio->SUVR	-0.9%±7.0%

- **□** Both SUVR and K_i ratio of FDG can provide robust prediction of SV2A SUVR.
- □ SUVR is slightly better, and is preferred as input for its easy of use

$FDG \longrightarrow \beta$ -amyloid

#Network1 SUVR->SUVR

Subject 1:Healthy Control

Subject 2:Alzheimier's Disease

Input FDG SUVR

True A $oldsymbol{eta}$ SUVR

Predicted $A\beta$ SUVR

Predicted Aβ SUVR with additional channel

R. Wang, et al. IEEE MIC 2019

Summary

- SPECT
 - Attenuation Map Generation
 - Direct Attenuation Correction
- PET
 - Denoising
 - Motion Correction
 - simultaneous denoising and motion estimation
 - Multi-tracer Image Generation
 - FDG -> other AD tracer

Acknowledgement

Group Member

Luyao Shi

Jing Wu

Hui Liu

Rui Wang

Bo Zhou

Wenzhuo Lu

Yu-Jung Tsai

PET Center

Richard Carson

Zhongdong Sun

Tak Toyonaga

Nozomi Sumida

Maribel Rayas

Tara Zalatimo

YNHH

Ming-Kai Chen

Larry Saperstein

David Menard

Joseph Ankrah

Matthew Gregory

Imaging Processing and Analysis

John Onofrey

Xenios Papademetris

Nicha Dvornek

Jim Duncan

University of Pennsylvania

Joel Karp

Margaret Daube-Witherspoon

Funding

R01EB025468

R01CA224140

R01HL123949