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Outline

• SPECT 
– Attenuation Map Generation
– Attenuation Correction

• PET
– Denoising
– Motion Correction
– Multi-tracer Image Generation
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Background and Motivation

Ø Accurate attenuation correction (AC) is 
essential for SPECT

http://www.people.vcu.edu/~mhcrosthwait/clrs318web/AC%20and%20transmission%20
applicatiin.html

Daisuke Utsunomiya, et al. Object-specific Attenuation Correction at SPECT/CT in Thorax: 
Optimization of Respiratory Protocol for Image Registration

L. Shi, et al. SNMMI 2019
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GAN Training and Human Studies
• Generator : U-net 3D
• Discriminator: CNN 3D
• 65 patient studies from YNHH
• Cardiac SPECT with 99mTc-tetrofosmin and attenuation CT scans 
• GE Discovery NM/CT 850

o Primary: 126 keV-155 keV
o Scatter: 114 keV-126 keV

Tc99m

primary 
window
(126keV-
155keV) 

scatter 
window
(114keV-
126keV) 

L. Shi, et al. SNMMI 2019
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Impact of Multi-channel Inputs and GAN

Visual comparison of GAN and U-Net using different inputs: both primary and scatter windows
(PS), primary window alone (P) and scatter window alone (S).

• Inaccurate body boundary recovery and artifacts (red arrows) were observed in GAN-P and UNET-P’s results

• Incorrect blood vessel shape was observed (yellow arrows) in the results from GAN-S and UNET-S

• When using only the primary window as input, GAN obtained much better result than U-net

L. Shi, et al. SNMMI 2019
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Evaluation

• UNET-P produced the worst results
• The GAN counterpart (GAN-P) produced more stable results
• The GAN-PS, GAN-S, UNET-PS and UNET-S methods obtained similar NMAE and MSE on the generated 

attenuation maps (µ) and attenuation corrected SPECT images (λ). 
• GAN-PS achieved the lowest ROI bias among all the methods
• For both GAN and U-net, the STD of bias are much lower when both primary and scatter windows were 

used as input, compared with the results based only on scatter input.

L. Shi, et al. SNMMI 2019



PET dose reduction
100% Dose 10% Dose with deep learning10% Dose

W. Lu, et al. PMB 2019



Comparison with existing denoising methods

Nstd image

Mean image

Difference image

Gaussian Filter
FWHM = 5 mm

MAP Quadratic
Beta = 0.5

Anatomical NLM
Beta = 0.1Full Dose PET Low Dose PET

r-U-net Predicted
Full Dose PET

W. Lu, et al. PMB 2019



Comparison with existing denoising methods
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W. Lu, et al. PMB 2019



Comparison between Low Dose PET and Low 
Dose PET/CT

3D U-Net

Patch: 64×64×16
Input channel: 1

Patch: 64×64×16×2
Input channel: 2

Patch: 64×64×16
Output channel:1

Patch: 64×64×16
Output channel:1

n 10 patients with CT image and visible nodule in CT image

W. Lu, et al. PMB 2019



Comparison between Low Dose PET and Low 
Dose PET/CT

Patient 4
Slice 190

W. Lu, et al. PMB 2019



Predicted Mean image
Low Dose PET

Predicted Mean image
Low Dose PET/CT

Comparison between Low Dose PET and Low 
Dose PET/CT

Patient 4

n Nodule bias reduces with well-registered CT information

Full Dose 
PET

CT

9.07 8.43 9.05

-0.64 -0.02

9.07

W. Lu, et al. PMB 2019



Comparison between Low Dose PET and Low 
Dose PET/CT

Patient 1
Slice 213

W. Lu, et al. PMB 2019



Comparison between Low Dose PET and Low 
Dose PET/CT

Patient 1
Slice 217

W. Lu, et al. PMB 2019



Comparison between Low Dose PET and Low 
Dose PET/CT

Patient 1 Predicted Mean image
Input: Low Dose PET

Predicted Mean image
Input: Low Dose PET/CT

n Mismatch of PET and CT degrades lesion quantification.

Full Dose
PET

CT

2.29 1.98 1.83

-0.31 -0.46

W. Lu, et al. PMB 2019



PennPET Explorer: Human studies
Studies performed with IRB protocol with informed consent

• CT from commercial PET/CT
- Light restraint of arms and head to aid alignment
- Register (rigid-body) to non-AC image

• 3 Rings: 70 cm axial length
• Spatial resolution: 4 mm
• TOF resolution: 250 ps
• Sensitivity: 55 kcps/MBq (permits low dose, fast, and late imaging)

Physics & Instrumentation Group

Department of Radiology, University of Pennsylvania Courtesy of Dr. Joel S. Karp



Early scan
87 min p.i.

20-min duration

Late scan
5 hr. 14 min p.i.
20-min duration

PennPET Explorer human studies

• Two subjects were injected with 15 mCi FDG and scanned in a single 
bed position on PennPET Explorer scanner.

Early scan
105 min p.i.

20-min duration

Late scan
4 hr. 20 min p.i.
15-min duration

Ultra-late scan
18 hr. 40 min (10 half-lives) p.i.

60-min duration

Subject A

Subject B

Similar counts level

J. Wu, et al. SNMMI 2019



Generate virtual-high-count late and ultra-late images

• No high-count label images of late and ultra-late scans

• Can we use the high-count early images to train the network?

• Is the denoising performance affected by FDG distribution?

Early Late Ultra-late

Image were normalized 
according to liver uptake

J. Wu, et al. SNMMI 2019



Is denoising performance affected by FDG distribution?

• 25% count
• 4 samples

Input • 100% count
• 1 sample

Label

• 25% count
• 4 samples

Input • Denoised 25% count
• 4 samples

Output

Testing network #1 and #2 using late scan of subject B 

• 6.25% count
• 4 samples

Input • 25% count
• 1 sample

Label

Similar 
counts level

Similar 
counts level

Training network #1 using late scan of subject A

Training network #2 using early scan of subject A

J. Wu, et al. SNMMI 2019



Image results: is denoising performance affected by FDG 
distribution?

100% count
(late scan)

25% count
(late scan)

Denoised 25% count
(trained with late scan)

Denoised 25% count
(trained with early scan)

J. Wu, et al. SNMMI 2019



Quantification results: 
is denoising performance affected by FDG distribution?

Late scan

Noise
(std/mean) Relative bias compared to 100% count CNR

Liver Cerebellum
Bone 

marrow
Myocardium Aorta wall Inflammation Inflammation

100% count 0.20 - - - - - 6.9

25% count 0.37±0.01 0%±1% -1%±3% 0%±0% -1%±0% -1%±2% 3.7±0.1

Denoised 25% 
(trained with 

late scan)
0.10±0.002 -2%±1% -3%±2% -1%±0% -3%±0% -2%±2% 13.1±0.2

Denoised 25%
(trained with 

early scan)
0.10±0.002 -2%±0% -4%±2% -1%±0% -4%±0% -4%±2% 12.5±0.4



Generate virtual-high-count late image

• 25% count
• 4 samples

Input • 100% count
• 1 sample

Label

• 100% count
• 1 sample

• Virtual-high-count
• 1 sample

Output

Training using early scan of subject A

Testing using late scan of subject B

Input

Similar counts level

J. Wu, et al. SNMMI 2019



Results: generate virtual-high-count late image

Late scan

Noise
(std/mean) Relative bias compared to 100% count CNR

Liver Cerebellum
Bone 

marrow
Myocardium Aorta wall Inflammation Inflammation

100% count 0.20 - - - - - 6.9

Virtual-high-
count

0.07 0% -1% -1% -3% -2% 18.1

100% count
(late scan )

Virtual-high-count
(late scan )

100% count
(late scan )

Virtual-high-count
(late scan )



Generate virtual-high-count ultra-late image

• 0.24% count
• 20 samples

Input • 100% count
• 1 sample

Label

• 100% count
• 1 sample

• Virtual-high-count
• 1 sample

Output

Training using early scan of subject A

Testing using ultra-late scan of subject B

Input

Similar counts level

J. Wu, et al. SNMMI 2019



Results: generate virtual-high-count ultra-late image

Ultra-late 
scan

Noise
(std/mean) Relative bias compared to 100% count CNR

Liver
Bone 

marrow
Myocardium Inflammation Inflammation

100% count 1.08 - - - 3.1

Virtual-high-
count

0.04 -5% 1% -25% 53.4

100% count
(ultra-late scan )

Virtual-high-count
(ultra-late scan )

100% count
(ultra-late scan )

Virtual-high-count
(ultra-late scan )

100% count
(ultra-late scan )

Virtual-high-count
(ultra-late scan )



De-noised PET image

Limitation for Non-FDG tracers
• Tracer with short half-lives

• O-15: 122.2 s
• Rb-82: 76.4 s

• Tracer with long half-lives
• Zr-89: 3.27 days

• New tracers
• Uncommonly used tracers

27

Low Dose 
PET image

Training with 3
patient dataset

• Full dose images may not be available!

• Training dataset may not be sufficient!

Full Dose 
PET image

Training with 12
patient dataset

H. Liu, et al. SNMMI 2019



Training and testing: Single bed

28

U-Net trained 
by FDG

Fine-tuned 
U-Net

U-Net trained 
by FMISO

9 FDG 12 FMISO

Fine tune: only the first layer and 
final layer would be updated.

For Fine-tuned U-Net and U-Net trained by FMISO: 
Leave out cross-validation approach was used. 

Training Testing

3 FMISO 12 FMISO
Fine tune Testing

9 FMISO 12 FMISO
Training Testing



Sample slices:  Single bed FMISO

29

Low dose PET Full dose PET

U-Net trained by FDG Fine-tuned U-Net U-Net trained by FMISO

SUV

SUV

The de-noised image with the three U-Nets are comparable!
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U-Net trained 
by FDG

Fine-tuned 
U-Net

U-Net trained 
by DOTA

12 FDG 15 DOTA

Fine tune: only the first layer and 
final layer would be updated.

For Fine-tuned U-Net and U-Net trained by DOTA: 
Leave out cross-validation approach was used. . 

Training Testing

3 DOTA 15 DOTA
Fine tune Testing

12 DOTA 15 DOTA
Training Testing

Whole body FDG and DOTATATE



Sample slices: Whole body DOTATATE

31

Low dose 
PET

Full dose 
PET

U-Net trained 
by FDG

Fine-tuned 
U-Net

U-Net trained 
by DOTA

SUV

Similar!



Cross-tracer & cross-protocol transfer learning

32

U-Net trained by 
Single bed FDG

Fine-tuned 
U-Net

U-Net trained 
by 3 DOTA

9 
Single bed 

FDG

15 
Whole body 

DOTA

Fine tune: only the first layer and final layer 
would be updated.

For Fine-tuned U-Net and U-Net trained by 3 DOTA: 
Leave out cross-validation approach was used. 

Training Testing

3 
Whole body 

DOTA

15 
Whole body 

DOTA

Fine tune Testing

3 
Whole body 

DOTA

15 
Whole body 

DOTA

Training Testing

U-Net trained by 12 DOTA was used as reference.



U-Net trained 
by 3 whole 
body DOTA

Reference

Cross-tracer & cross-protocol transfer 
learning

33

Low dose 
PET

Full dose 
PET

Fine-tuned U-Net 
with 3 whole 
body DOTA 

U-Net trained 
by 12 whole 
body DOTA

U-Net trained 
by 9 single 
bed FDG

SUV



Brain PET Imaging

• Positron Emission Tomography (PET) imaging is increasingly 
employed in AD studies to measure  β-amyloid, tau protein, 
glucose metabolism, synaptic vesicle glycoprotein 2A (SV2A) 
and so on. 

Isotope Tracer Tracer Description
18F FDG glucose metabolism
18F AV-1451 tau imaging agent
11C PiB 𝛃-amyloid
11C UCB-J Synaptic Vesicle 2A (SV2A) ligand



𝛃-amyloid tau protein

FDG SV2A

Static Images of four tracers from One AD Patient 

？

？ ？



Static Image Prediction
Network #1: SUVR->SUVR 
Network #2: Ki ratio->SUVR

Index of Network
SV2A output

SUVR BPnd ratio

FD
G

in
pu

t SUVR #1 #3

Ki  Ratio #2 #4



Predicted
SV2A 
SUVR

True 
SV2A 
SUVR

Input 
FDG 

SUVR

Difference
Image

2.3

0

2.3

0

2.3

0

Subject 1: Alzheimer's Disease

2.4

0

2.4

0

2.4

0

Subject 2: Healthy Control

50%

-50%

0

50%

-50%

0



Predicted
SV2A 
SUVR

True 
SV2A 
SUVR

Difference
Image

2.3

0

2.3

0

2.3

0

Subject 1: Alzheimer's Disease

2.3

0

2.3

0

2.3

0

Subject 2: Healthy Control

50%

-50%

0

50%

-50%

0

Input 
FDG 

Ki ratio



Network Mean±SD

SUVR->SUVR -0.4%±6.8%

Ki ratio->SUVR -0.9%±7.0%

Mean bias across all the 18 ROI

Hippocampus

Entorhinal

Precuneus

Cingulate
Parietal

Temporal
Frontal

Occipital
Insula

Thalamus

-10%

-5%

0%

5%

10%

B
ia

s

 SUVR->SUVR  Ki ratio->SUVR

p Both SUVR and Ki ratio of FDG can provide robust prediction of SV2A SUVR.
p SUVR is slightly better, and is preferred as input for its easy of use

SUVR -> SUVR VS Ki ratio -> SUVR



FDG —> 𝛽-amyloid
#Network1 SUVR->SUVR 



Subject 1:Healthy Control

True 
A𝜷 SUVR

Predicted 
A𝜷 SUVR

Subject 2:Alzheimier’s Disease

Input
FDG SUVR

Predicted 
A𝜷 SUVR 

with 
additional 

channel
R. Wang, et al. IEEE MIC 2019



Summary

• SPECT 
– Attenuation Map Generation
– Direct Attenuation Correction

• PET
– Denoising
– Motion Correction

• simultaneous denoising and motion estimation
– Multi-tracer Image Generation

• FDG -> other AD tracer



Acknowledgement
Group Member
Luyao Shi
Jing Wu
Hui Liu
Rui Wang
Bo Zhou
Wenzhuo Lu
Yu-Jung Tsai

PET Center
Richard Carson
Zhongdong Sun
Tak Toyonaga
Nozomi Sumida
Maribel Rayas
Tara Zalatimo

Imaging Processing and Analysis
John Onofrey
Xenios Papademetris
Nicha Dvornek
Jim Duncan

YNHH
Ming-Kai Chen
Larry Saperstein
David Menard
Joseph Ankrah
Matthew Gregory

Funding 
R01EB025468
R01CA224140 
R01HL123949

University of Pennsylvania 
Joel Karp
Margaret Daube-Witherspoon


