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Introduction

Compressive Sensing

Machine Learning

Sparsity

To apply the CS technique in the CT field, the key Is to
explore the sparsity in a transform domain, and machine
learning plays an important role for this goal.




Introduction

2009 We developed the CS-based interior tomography theory and
algorithms to solve the long-standing “interior problem” for high-
fidelity local reconstruction
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Abstract
While conventional wisdom is that the interior problem does not have a unique
solution, by analytic continuation we recently showed that the interior problem
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2012 We applied the dictionary learning technique for low-dose CT

reconstruction.

1682

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 9, SEPTEMBER 2012

Low-Dose X-ray CT Reconstruction
via Dictionary Learning

Qiong Xu, Hengyong Yu*, Senior Member, IEEE, Xuanqin Mou*, Lei Zhang, Member, IEEE.,
Jiang Hsieh, Senior Member, IEEE, and Ge Wang, Fellow, IEEE

Abstract—Although diagnostic medical imaging provides enor-
mous benefits in the early detection and accuracy diagnosis of var-
ious diseases, there are growing concerns on the potential side ef-
fect of radiation induced genetic, cancerous and other diseases.
How to reduce radiation dose while maintaining the diagnostic per-
formance is a major challenge in the computed tomography (CT)
field. Inspired by the compressive sensing theory, the sparse con-
straint in terms of total variation (TV) minimization has already

better images with lower noise and more detailed structural fea-
tures in our selected cases. However, there is no proof that this is
true for all kinds of structures.

Index Terms—Compressive sensing (CS), computed tomography
(CT), dictionary learning, low-dose CT, sparse representation, sta-
tistical iterative reconstruction.
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2013 Learning based method for imaging biomarkers
Funded Project (NIH/NIBIB R21 EBO19074)

Proposal first submission date: Nov. 201 3,
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Factorization for Spectral CT Reconstruction
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Focus of this talk (Under Review)
Dictionary Learning based Image-domain

Material Decomposition for spectral CT
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Introduction

Material decomposition:
l. Direct material decomposition methods: directly obtain material
components using x-ray spectrum from projections
Pros:
® Avoid the x-ray beam hardening artifacts;
® Regularization prior can penalize material maps;
Cons:
® The real x-ray spectrum is difficult to achieved;
® Projection noise can be amplified in projection
decomposition;
Il. Indirect material decomposition methods: including projection-
based and image-based methods#
Pros:
® The reqgularization prior can penalize projections or
reconstructed map images;
® Image-based methods can reduce noise well;
Pros:

® Cannot avoid x-ray beam hardening artifacts;
11




Introduction

Material decomposition methods:

Spectral CT images (attenuation maps at from all energy bins) are
available using image reconstruction methods (such as FBP, etc)

€ Conventional image-domain decomposition
» Direct matrix inversion decomposition*
Sensitive to artifacts and noise.
» Regularized (model-based) decomposition
Statistical measurement model + Object prior model

Improves image quality and decomposition accuracy

[4] [ Zhang et al., IEEE T-MI, 2016]

12




Introduction

Regularization methods for material decomposition:

® Material decomposition with prior knowledge aware iterative
denoising (MD-PKAID) >

» Retain structure details by exploring the structural redundancy

» The material accuracy and image quality depending on prior
Image
® Density, local joint Sparsity and structural low-Rank (DSR) ©

» Artifact reduction with improvement of material accuracy
» Ignores the physical effects with many parameters

» Validate only on numerical phantom

[5] [ Tao et al., Physical in medicine and biology, 2018]
[6] [ Xie et al., Journal of Nondestructive Evaluation, 2019] 13
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Model formulation

Material decomposition basic model’

‘911 191|\/| 1:1 X
. o . . _ S (1)
_‘9N1 ‘9N|v| AL fM 4 [ Xy ]
> Yym(1<n<N1<m<M)------ averaged attenuation coefficients of the mth material at nt
energy window;
> fmd<m<M)------ mt" material component maps;
> X,(1<n<N)----—-- spectral CT image of the nt* energy window.
The matrix form of Eq. (1) can be formulated as
5 F9 =X 2)
Y11 Uim
> 9= EIERNXM;.
Un1 - Oym

> F e RIvXM gnd X € R/1J2*N represent two tensors;
> Fz) € RMI (] =] x],) and X3y € RV are the mode-3 unfolding of F and X.

[7] [Wu et al., Arxiv, 2019]
[8] [Wu et al, IEEE Access, 2019] 15



Model formulation

Considering noise in the reconstructed images, Eq. (2) can be read
as

FF e = Xy™ (3)
> n-——- the noise level
argmin EHX ~9F H2 +AR(F) (4)
S 1 TVl
>  R(F)------ the regularization term
> A-——— the regularized parameter

R(F) can be the Total Variation (TV), non-local mean and block
matching frame and so on.

[7]1 [ Wu et al., Arxiv, 2019] 16




Model formulation

The idea of vectoried dictionary learning (DL):

. y

Dictionary D e R"**,N <K
i Image patch x e RM*
SEF VRN Sparse representation
PR aeRKXl, lol, = N= K
Dictionary
q:p mmin||oz||O st. ||x—Da||§ <g

i -Sparse
Representation

Given a training set of patches, x, e R"(s=1L ,9), the dictionary
learning is to solve

S

”[}L” Z(”Xs —Da, ”2 AE ”as ”o)

s=1

17




Model formulation

The conventional dictionary learning based image-domain material
decomposition can be expressed as
2
ol rnlnl)] ©

AN

|The data fidelity term | | Dictionary learning regularization term |

" e

H,(F,,)--—---- the it image patch extraction operator from F,,
D,,------ the trained dictionary for mt" material

V V V V V V

Ay—————— the regularized parameter for mt material

[71 [ Wu et al., Arxiv, 2019] 18



Model formulation

Cons of conventional dictionary learning based image-domain
material decomposition:

» Because a specific material map may only contain a few image
features, it is difficult for the trained D,,, to encode the image

features and reduce sparse level;

» training different D,, is time consuming;
» the correlation between different material maps will be lost

-t

(a)Bone [0 1] (b) Soft tissue[0 1] (c) lodine [0 0.012]

Three basis materials of numerical mouse
[7]1 [ Wu et al., Arxiv, 2019]

19



Model formulation

Solution

» Training a unified dictionary using image patches from all material
images;

» The normalization strategy is operated on the training material
Image to avoid the data inconsistency of material images;

The conventional dictionary learning based image-domain material
decomposition can be expressed as

2

valball )| ©

)5 5l
\

|The data fidelity term | | Dictionary learning regularization term |

argmln —HX
F {Bm s

> D--—---the trained unified dictionary

[71 [ Wu et al., Arxiv, 2019] 20




Model formulation

Additional conditions

D Ifthe air is also treated as one basis material, the summation of
pixel values of different material images at the same location
should be equal to one, i.e.,

M
(Zj:jljzij“ AR, =1(1<j <J,1<j,<,) (7)
m=1

> AIR is the air map and AIR; ;, represents the binary pixel value at (1, j2)™" location. A

1J2
threshold method is applied to determine the air map (0 or 1).

@ The pixel value within F should be in the range of [0 1],i.e.,

0< f.jljZm <l (8)

[71 [ Wu et al., Arxiv, 2019]

21




Model formulation

Considering Egs. (7) and (8), the proposed dictionary learning based
image-domain material decomposition (DLIMD) method can be

formulated as
2
mi E +Vmi ”Bmi ”0 jj

argmln( HX
F B}y

()
s.t (Z . )+ AIR, . =1V, j, 0< F <1,

Pros:

» can fully encode similarities within different material images;
> can enhance the redundancy with the trained dictionary D;
» save training time to some extent in practice.

[71 [ Wu et al., Arxiv, 2019] 22




Optimization

Introducing tensor U to replace F, Eq. (9) can be converted into

argmin (%HX@) +i%mlzl:( i + Vi [B ||0D (10)

F Bl
s.t (Z h]zm]+ AR, =1Vj,J, U=F 0<F <L

Eqg. (10) can be divided into two sub-problem

argmin| 3, -0, [+ |-
(11a)

0)j (11b)

[71 [ Wu et al., Arxiv, 2019] 23

N

s.t. (Z “m]+AIRM2 =1,Yj,,j,,0< F <1.

2l

mi mi

argmm( HL{ F
| U{Bn sy




Optimization

As for Eq. (11a), it can be simplified as’

2

argmln—H Igenl) Fyy - (972, +dl),) F (12)

hi#
‘7:1112#

vjl’JZ’St(z Jij 10< ‘7:1112#—1'

Eg. (12) is a constrained least square problem and it can be easily solved.

For Eq. (1 1b) can be divided into the foIIowing problem

argmln () +— (H?—t, | Y, ||Bmi||o),1§m§M (13)

Un Bm

where t,, = 4,,/1, the Eq. (13) can be solved by using the method in [8]

[7]1 [ Wu et al., Arxiv, 2019]
[9]1 [ Wu et al., APM, 2018]

24
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Implementation

® Comparisons: Direct inversion (DI) method, total variation
material decomposition (TVMD) method

® The iteration number is 30 and the parameters in Table |

® The number of atoms within the dictionary are set as 512
and Image patches are 10000, patch stride 1x1

® Other parameters are in the following Table

i I I Al
Size

3x105 3  10x10 (0.02, 0.057, 0.0025)
mouse

Physical 0.003 10  8x8 (0.08, 0.03, 0.0025)
nhantom

Preclinical 0.001 12 8x8 (0.004,0.012,0.05)

experiment

[7]1 [ Wu et al., Arxiv, 2018] 26




Implementation

® Three indexes, i.e.,, RMSE, PSNR and SSIM are employed

® The unified dictionaries used in numerical mouse, physical
phantom and preclinical experiment
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[7] [ Wu et al., Arxiv, 2018]

fon
o i, By
ol ™S
NS
el L4
-\
v
bl |
mNA
—
%

Fl g T Pld ™
‘-
Nk
wma
A N
e N
R™ N
LA |
| Y -
AN
L]
Ll

A d™k d

B aN
IH‘HAF"ANI-Q
-KYV'QILAH-!H

ol AL LB NN T W™l [N PP L L™ L1

N O TR LY e n o AT 45



Section I: Numerical mouse

Material decomposition from FBP mouse results

The display windows of 1st-3rd columns are [0.01, 0.2], [0.25 0.55] and [0.0007 0.003]
28




Section I: Numerical mouse

Material decomposition from FBP mouse results

The display windows of 1st-3rd columns are [0.01, 0.2], [0.25 0.55] and [0.0007 0.003]

[8] [ Wu et al., APM, 2018] 29




Section I: Numerical mouse

Table I. Quantitative evaluation results of three basis materials.

I 01 N L

8.719 21.191  0.9314

Bone TVMD 8.279 21.641  0.9439
DLIMD 7.873 22.077  0.9461

DI 13.890  17.146 07834

TVMD 12910 17782  0.8491

DLIMD 12368 18.154  0.8646

lodine [y 0.0853  61.380  0.9056
;;::‘rtas" TVMD 0.0734 62682 09214
DLIMD 0.0688  63.251  0.9393

30




Section ll: Physical phantom

Experiment set-up

= A micro-focus x-ray source (YXLON, 225Kv)

= A flat-panel PCD (Xcounter, XC-Hydra FX20)

= 2048 detector cells, 1080 views, 137kV, SOD: 182.68mm, SDD:440.50mm
= 256Xx256 image size

Aluminum

10mg/uL
lodine

15mg/ulL
lodine

Setups of physical phantom experiments. (a) is the spectral CT system, (b) and
(c) represent the physical phantom.

31




Section ll: Physical phantom

Material decomposition results

Aluminum Water lodine

DI

From left to right, the columns represent the decomposition results of aluminum, water
and iodine, where the display windows are [0.5 1], [0.8 1] and [0 0.003].

32



Section ll: Physical phantom

Material decomposition results

Aluminum Water lodine

TVM

From left to right, the columns represent the decomposition results of aluminum, water
and iodine, where the display windows are [0.5 1], [0.8 1] and [0 0.003].
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Section ll: Physical phantom

Material decomposition results

Aluminum Water lodine

DLIM

From left to right, the columns represent the decomposition results of aluminum, water
and iodine, where the display windows are [0.5 1], [0.8 1] and [0 0.003].

34



Section ll: Physical phantom

Table II. Quantitative evaluation results of ROl 1-5

DI
TVMD
DLIMD
DI
TVMD
DLIMD
DI
TVMD
DLIMD
DI
TVMD
DLIMD
DI
TVMD
DLIMD

889
861
828
324
291
271
5.253
2.196
1.812
6.854
3.009
2.399
12.530
7.780
7.639

21.026
21.299
21.635
29.796
30.718
31.329
65.593
73.169
74.839
63.281
70.431
72.400
58.041
62.180
62.340

0.9882
0.9882
0.9925
0.9732
0.9913
0.9977
0.4118
0.7588
0.8483
0.6200
0.8625
0.9165
0.6204
0.8549
0.8945

35



Section lll: Preclinical experiment

® PCD : PILATUS3 with 4 energy-channels by DECTRIS; It consists
of 515 cells and each has a length of 0.15 mm
® Projection view is 720 and SOD= 35.27 cm, SDD= 43.58 cm

® The size of each material image is 512x512

Preclinical experiment. (a) is the preclinical specimen fixed on the spectral CT system.
(b)-(e) are FBP reconstruction results from 4 energy bins, where the display window is

[0 0.5] cm!

36




Section lll: Preclinical experiment

® Material decomposition results
DI TVMD DLIMD

Bone

Soft tissue

lodine
contrast
agent

The 1st-31 rows represent the bone, soft tissue and iodine with the
display windows [0.25 0.5], [0.85 0.95] and [0.0018 0.005].

37



Section lll: Preclinical experiment

® Material decomEoston results

TVMD

DLIMD

The 1st-4th rows represent the ROIs marked with “A" , “B" , “C" and "“D",
where the display windows are [0.29 0.33], [0.85 0.95], [0.85 0.95] and [0.85 0.95]. 38




] 4. Discussion & Conclusion
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Discussion and conclusion

O Discussion
® Parameters are chosen empirically in the proposed DLIMD

® The numerical mouse and two real datasets only contain
three different basis materials, however the imaging objects
may contain multiple (greater than 3) materials

O Conclusion
® Considering the similarities of different material images, we
construct a unified dictionary to encode material image
sparsity by training a set of image patches

® Formulating a DLIMD mathematical model by enhancing
sparsity of material maps with the dictionary

® additional constraints are incorporated into the model to
further improve the decomposition accuracy

40







