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Theoretically exact FBP-type inversion algorithm
for spiral CT

Alexander Katsevich

Abstract— Proposed is a theoretically exact formula for
inversion of data obtained by a spiral CT scan with a 2-
D detector array. The detector array is supposed to be o
limited extent in the axial direction. The main property of
the formula is that it can be implemented in a truly filtered
backprojection fashion. First, one performs shift-invariant
filtering of a derivative of the cone beam projections, and,
second, the result is back-projected in order to form an im-
age. Another property is that the formula solves the so-
called “long object problem”. Limitations of the algorithm
are discussed. Results of numerical experiments are pre-
sented.

I. INTRODUCTION

In the past decade it became clear that spiral CT can be
significantly improved if one uses two-dimensional detector
arrays instead of one-dimensional ones. However, accurate
and efficient image reconstruction from the data provided
by such scanners is very challenging because there does not
exist a theoretically exact and efficient reconstruction for-
mula. Several approaches for image reconstruction have
been proposed. They can be classified into two groups:
theoretically exact and approximate. See [1] for a recent
review of available algorithms. Most of exact algorithms
are based on computing the Radon transform for a given
plane by partitioning the plane in a manner determined by
the spiral path of the x-ray source [2], [3], [4], [5]. Even
though exact algorithms are more accurate, they are com-
putationally quite intensive and require keeping consider-
able amount of cone beam (CB) projections in memory.
Approximate algorithms are much more efficient (see e.g.
[6], [7], [8], [9] for several most recent techniques), but
produce artifacts, which can be significant under unfavor-
able circumstances. Despite the progress achieved in recent
years, it appears that no algorithm which would be both
efficient and theoretically exact have been proposed in the
literature so far.

In this paper we propose the first theoretically exact in-
version formula for Spiral CT which is truly of the filtered
backprojection (FBP) type. This means that the formula
can be numerically implemented in two steps. First, one
performs shift-invariant filtering of a derivative of the CB
projections, and, second, the result is back-projected in or-
der to form an image. The price to pay for this efficient
structure is that the algorithm requires an array wider than
the theoretically minimum one. Also, the algorithm is ap-
plicable if radius of support of the patient inside the gantry
is not too big (not greater than ~ 0.62x radius of gantry).

This research was supported in part by NSF grant DMS-9704285.
The author is with the Department of Mathematics, University of
Central Florida, Orlando, FL 32816-1364. E-mail address: akat-
sevi@pegasus.cc.ucf.edu

Clearly, this limitation is not a big problem in many cases:
for example, when one scans the head or an extremity of a
patient.
II. INVERSION FORMULA
First we introduce the necessary notations. Let
C:={y € R’ :y1 = Rcos(s),y> = Rsin(s),ys = s(h/2r),
sel}, I:=]a,b,
(1)

where h > 0,b > a, be a spiral, and U be an open set
strictly inside the spiral:

Uc{reR: 2] +25 <r? a(h/2r) < 23 < b(h/2m)},

(2)

0 < r < R, S? is the unit sphere in R®, and

Dy d) = [ S+ ses, @
B(s,z) :== %,meuse[, (4)
O(z,8) :={y e R : (y —x)-£ =0}, (5)

that is Dy (y, 3) is the CB transform of f. Given (z,&) €
Ux (R*\0), let s; = s;(§,&2),j =1,2,..., denote finitely
many points of intersection of the plane I(x, &) with C.
Also, g(s) := dy/ds.

As was shown in [10], [8], any point strictly inside the
spiral belongs to one and only one PI segment. Recall
that a PI segment is a segment of line endpoints of which
are located on the spiral and separated by less than one
pitch in the axial direction. Let s = sp(x) and s = s;(x)
denote values of the parameter corresponding to the end-
points of the PI segment containing z. We will call
Ipi(z) := [sp(z),s:(x)] the PI parametric interval. The
part of the spiral corresponding to Ipr(x) will be denoted
Cpr(z). Also, inside the PI parametric interval there exists
so = so(z) such that the plane through y(s¢) and parallel
t0 y(s0),%(s0), contains z.

Fix xz € U. It is clear that any plane through z intersects
Cpr(x) at least at one point. Introduce the following sets:

Crit(z) ={¢ € R* \ 0: II(z, £) contains y(sy(x)),y(s:(z))
or II(z, £) is tangent to Cpy(z)} U {0},
Ei(z) ={¢€ € B® : £ € Crit(z) and (x,&) N Cpr(x)
contains one point},
Z3(z) =R \ {1 (z) U Crit(z)}.



By construction, the sets Crit(x), Z1 2(z) are pairwise dis-
joint, their union is all of R*, Crit(x) is closed and has
Lebesgue measure zero, and =1 2(x) are open.

Let e1(s,z) denote a unit vector in the plane through
y(s) and spanned by (s, z),y(s) subject to the conditions
that eq (s, x) is perpendicular to 8(s,z) and e; (s, z)-y(s) >
0.

Given y(S),S € (sb(l'),st(m)) \ {80(1’)}, find sian €
Ipi(x), Stan # S, such that the plane through z,y(s), and
Y(Stan) 1s tangent to Cpr(z) at y(stan). For the excep-
tional values s € {sp(x), s¢(z), so(z)}, Stan is determined
by continuity. This construction defines a continuous func-
tion Stan = Stan(S, ). One can show that s = so(z) implies
Stan = So(z).

Similarly, let es(s,z) be a unit vector in the plane
through z,y(s), and tangent to Cpr(z) at y(stan(s, z)). We
require also that es(s,z) is perpendicular to 3(s,z). This
determines a continuous vector-valued function es (s, z) up
to a sign. The final requirement to eliminate ambiguity is
e1(s,z) = ea(s,x) when s = spon = so(z).

For f € C§°(U) and k = 1,2 define

1 1
(Bef)(z) == 92 /IPI(I) Jz —y(s)]

27 6 )
X %Df(y(q),cosvﬂ(s,x) +sinyex(s, 7))

0 q=s

(7)

Our main result is the following theorem.
Theorem 1: The operators B,k = 1,2, can be written
in the form

(Bif)(x) = —

(2n)?

where for each z € U, By(z,£) € L>(R®) with respect to
¢ and

[ B i uae

1, £€Ei(x),

Prlw ) = {3 £ € 55(a),

By(,&) = {1’ ‘e El(m;’

-1, f € =3 (ZE .
(9
Since the set Crit(xz) has Lebesgue measure zero, (9)
immediately implies the following inversion formula.
Corollary 2: Under the assumptions of Theorem 1,

[ = 5B +Ba). (10)

An important feature of the double integral in (7) is that

for each x € U the integral with respect to s is confined only

to the theoretically minimal portion of the spiral Ips(z).

This implies that inversion formula (10) solves the so-called
“long object problem” (see [8] for a definition).

III. PRACTICAL IMPLEMENTATION AND NUMERICAL
EXPERIMENTS

In this section we discuss efficient algorithms for com-
puting By »f. Fix any y(so) on the spiral. It is assumed

that the detector plane is parallel to the axis of the spiral
and is tangent to the cylinder y? + y2 = R? (cf. (1)) at
the point opposite to the source. Thus, the distance be-
tween y(sog) and the detector plane is 2R. Stereographic
projections of the upper and lower turns of the spiral onto
the detector plane are denoted by I't,, and I'y,, respec-
tively (see Figures 1 and 2). Let Lo denote the common
asymptote of I'y,, and I'yor. The parameter A shown in
these figures is determined by the radius of support of the
patient: A = 2cos !(r/R) (cf. (2)).

Fix now any 3 € S2. By construction, all points = €
U such that 3(s,z) = B will generate the same vectors
e1(s,z) and e2(s,z). Denoting the corresponding vector-
valued functions by e (s, ) and ea(s, 3), rewrite By f, k =
1,2, as follows:

1 1

Be)@) =~z [ el Bls,m)ds

2m
Wils,0) = [ 2 Dyly(a),cosd+ sinen(s, 6)

0 q q=s

1
sin'yd’y'
(1)

Suppose first k = 1. Let II(w),w € R, denote the family of
planes containing y(s) and parallel to §(s). Intersections
of IT(w) with the detector plane generate a family of lines
L(w) parallel to Lo (see Figure 1). Fix any § € [I(w). By
construction, vectors cosyf8 + sinvyei(s,[),0 < v < 2,
belong to the same plane II(w). Here, for convenience, we
think of vectors 3,e; (s, 3), and their linear combinations
as if they are attached to y(s). Let 6 be a polar angle in
II(w). Since ei(s,B) - B = 0,les(s, )| = 1, we can write
(with abuse of notation):

B = (cosf,sinb), ei(s, ) = (—sinb, cosb),

B,ei1(s, B) € II(w). (12)
Therefore,
27
068 = [ 2 Dy(ula), (cos(t+7),5in( + )
0 q g=s
X .1 dv, B € (w).
sin y
(13)

Equation (13) is of convolution type. Hence, one appli-
cation of Fast Fourier Transform (FFT) to the integral in
(13) gives values of Uy (s, 3) for all g € II(w) at once.
Calculation of Baf can be arranged in a similar way.
Fix sten € [s — 27 + A,s + 27 — A}, Stan # s, and let
II(s¢qn) denote the plane through y(s),y(stan), and con-
taining §(Stan)- If Stan = 8, U(stan) is determined by
continuity and coincides with the plane through y(s) and
parallel to g(s),4(s). The family of lines L(stq,) oOb-
tained by intersecting II(s:,,) with the detector plane is
shown in Figure 2. By construction, given any z € U
with B(s,z) € II(Stan), Stan used here is precisely the
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same as Sion used in the definition of es(s,x). Since
ex(s,B) - B = 0,ea(s, B)] = 1, we can write (with abuse
of notation):

B = (cosf,sinf), ea(s, ) = (—sinb, cosb),

5762(575) € H(Stan)- (14)
Therefore,
27 o
Ua(s,8) = | 5-Dr(y(a), (cos(d +7),sin(f +7)))
0 q s
X ‘1 d’)/, ﬂ € H(Stan)-
siny
(15)

Equation (15) is of convolution type and one application of
FFT gives values of Us(s, 3) for all § € I(stqn) at once.
Equations (11), (13), and (15) imply that the resulting
algorithm is of the filtered-backprojection type. First, one
computes shift-invariant filtering of a derivative of CB pro-
jections using (13) for all required w: wmin < w < Wmnaz
(cf. Figure 1), and using (15) - for all sy, € [s — 27 +
A, s+ 2m — A] (cf. Figure 2). The second step is backpro-
jection according to the first equation in (11). Since 0/0q
in (13) and (15) is a local operation, each CB projection
is stored in memory as soon as it has been acquired for a

short period of time for computing this derivative at a few
nearby points and is never used later.

This discussion shows that for the algorithm to work the
following two conditions must be satisfied. First, the detec-
tor array should be large enough to contain the parallelo-
gram formed by the lines I';, I’ and L(wmin), L(wmaz ). We
will call this parallelogram the parallelogram-shaped de-
tector array (PSDA) and its area will be denoted Apspa.
Thus, the size of the detector array required for the al-
gorithm is greater than the theoretically minimum one,
which is bounded by I';,I', and Liop, por. Its area will
be denoted A,,;n. The ratio of the two areas is indepen-
dent, of the pitch h, but grows as r — R. For example,
APSDA/Amin = 1.53 if T/R = 1/3 and APSDA/Amin =
1.93 if r/R = 0.5. Second, the segments of lines tangent to
Ciop and Dyt at s = s + 27 — A and s — 27 + A, respec-
tively, and located between I'; and T',. should be inside the
detector array. This requirement leads to the restriction
r/R < cos(Ag/2) ~ 0.62, where Aj is the unique solu-
tion to the equation tan(27w — A) = 27 — A on the interval
/2 <A <.

Consider now two numerical experiments. Parameters of
the data collection protocols are given in Table I.

Shepp disk
phantom | phantom
R (radius of the spiral) 3
h (pitch of the spiral) 0.5
axial span of the detector array 1.02 0.96
transverse span of the
detector array 4.74 4.26

number of detector rows 50

number of detectors per row 500
number of source positions
per one turn of the spiral 1500

TABLE 1
PARAMETERS OF THE DATA COLLECTION PROTOCOLS

In Figure 3 we show the results of reconstructing the 3-D
low contrast Shepp phantom (see Table 1 in [11]). In the
top panel we see a vertical slice through the reconstructed
image at ; = —0.25, and in the bottom panel - the graphs
of exact (dashed line) and computed (solid line) values of
f along a vertical line z; = —0.25,25 = 0. We used the
grey scale window [1.01, 1.03] to make low-contrast features
visible.

In Figure 4 we see the results of reconstructing the disk
phantom, which consists of six identical flattened ellipsoids
(lengths of half-axes: 0.75, 0.75, and 0.04, distance between
centers of neighboring ellipsoids: 0.16). In the top panel
we see a vertical slice through the reconstructed image at
;1 = 0, and in the bottom panel - the graphs of exact
(dashed line) and computed (solid line) values of f along a
vertical line z; = 0,22 = 0.

As one can see, the algorithm still suffers from artifacts
that are due to discretization and/or sampling errors. How-
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Fig. 3. Reconstruction of the 3-D Shepp phantom

ever, there are no artifacts that could be caused by non-
exactness of a reconstruction scheme. Such artifacts have
been theoretically studied and demonstrated numerically
in [9] in the case of one approximate reconstruction al-
gorithm. In numerical experiments presented in [9] these
artifacts appear as nearly horizontal lines tangent to the

ellipsoids.
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I. INTRODUCTION

Since the development of multi-slice helical CT,
cone-beam reconstruction with a helical vertex path is
receiving increasing attention. The current multi-slice
CT scanners are adopting a class of approximate
reconstruction algorithms which can be viewed an
extension of the 2-D FBP algorithm. However, these
approximate algorithms break down as the pitch of
helix becomes large. In fact, major companies are
beginning to develop a large area detector having more
than 100 detector rows which allows a helical scan with
a quite large pitch. This limitation of approximate
algorithms motivated researchers to develop a class of
exact reconstruction algorithms [1]-[6].

The reconstruction problems in helical cone-beam CT
can be divided into the short-object (SO) problem and
the long-object (LO) problem. The SO problem aims at
reconstructing an object having a finite axial support
when the helix is long enough to cover the object support.
The LO problem aims at reconstructing a central region
of interest (ROI) of a long object when the helix is long
enough to cover the ROI but too short to cover the
whole object. In 1998, Tam [1] and Kudo et al. [2]
developed quasi-exact algorithms for the SO problem.
In 2000, Schaller et al. [3], Defrise et al. [4], and Kudo
et al. [5] extended the solutions to the SO problem to
the LO problem. The resulting algorithms are called the
Local-ROI (L-ROI) method [3],[6], the Zero-Boundary
(ZB) method [4], and the Virtual-Circle (VC) method [5]
in the literature. However, it is fair to say that these
algorithms need rather complicated modifications to the
quasi-exact algorithms for the SO problem.

The purpose of this paper is to develop new quasi-exact
FBP algorithms to the LO problem. Similarly to the VC
method [5], the algorithms can be viewed an extension
of the quasi-exact FBP algorithm for the SO problem
developed by Kudo et al. [2]. The main advantage of the
proposed algorithms is their simplicity compared with the
existing quasi-exact algorithms (L-ROI, ZB, and VC).
The algorithms need only a few small changes to the
quasi-exact FBP algorithm for the SO problem although
their derivation involves rather different mathematical
logic. We show simulation results which demonstrate that
the proposed algorithms allow to reconstruct high-quality
images indistinguishable from those by the VC method

[5]-

II. PROPOSED ALGORITHMS

A. FBP Algorithm for Short-Object Problem

We first review the quasi-exact FBP algorithm for the
SO problem derived by Kudo et al. [2] which is the basis
of proposed algorithms for the LO problem. This review
also helps to convince readers what modifications are
necessary to convert the algorithm for the SO problem
into the algorithms for the LO problem.

We use the same notations as in our previous papers
[2],[5]. Let f(¥) denote an object supported inside a
cylinder Q = {7 | 2% + y? < Q?} where 7= (z,y,2)T. We
assume that cone-beam projections are measured along a
finite segment of helix:

a(A) = (Rcos )\,Rsin)\,h/\)T; Amin < A < Amax (1)
where 27h is the pitch and the range [Amin, Amax| defines
the length of helix. Let g(u,v,\) denote a cone-beam
projection measured from the source point @(A) where
(u,v) denote the detector coordinates defined such that
the wu-axis coincides with the tangential direction of the
helical path @' (\). Let D(XA) denote the detector plane
corresponding to @(A) where D()\) contains the z-axis.
We assume that each cone-beam projection is measured
over the finite region on the detector plane B which is
bounded by the cone-beam projection of the upper turn
of helix onto D(\) and by the cone-beam projection of
the lower turn onto D(X). The explicit expression of
B can be found in [1],[2]. This region B is known to
be the minimum detector area compatible with exact
reconstruction. Let xp(u,v) denote the indicator function
of B. We also use a notation g*(s,t,A) below to denote
a cone-beam projection rotated by an angle p on the
detector plane where (s,t) denote the coordinates rotated
by the angle . Kudo et al. [2] derived the FBP algorithm
for the SO problem. This algorithm is quasi-exact when
the axial support of the object is small compared with the
length of helix such that g(u,v, Amin) and g(u,v, Amax)
vanish over the region B. The algorithm is summarized
as follows.

<Algorithm for SO Problem (Algorithm SO)>
[STEP 1] Weighting
R

gl(um,)\) = Wg(um,)\) (2)



[STEP 2] Computation of Ramp Filtering Term

" (u, v, \) = L /00 du'h(u—u")xp(u' v)g1 (v v,\)
2 J_ o
3)
where h(-) denotes the kernel of the ramp filter.
[STEP 3] Computation of Boundary Correction Term

SN (5.1, 3) = cu (s, (s, b, N) + en (s w)gf (5.2, A)
o (4)

ﬁ%/_ﬂﬂdm?g}) (wcos pu + vsin p, p, )
()
where ¢y (or t1,) denotes the ¢-coordinate of the point on
which the straight line s = wcosp + vsin o intersects the

upper (or lower) boundary of B. The explicit expressions
of cy(s, 1) and cr(s, ) can be found in Eq. (30) of [5].

[STEP 4] Backprojection

ﬂﬂ—lmw

min

9" (u,v,\) =

LA RZACYA

A LI -
[(F—a(N) - Lu]?

97" (u,0, M) +g" (u, v, N))
(6)

where fw denotes the unit vector which is directed toward
the detector center from d@(\).

The key feature of the above algorithm is that the
filtered projection g™ 4 ¢'* can be computed as a
sum of the ramp filtering term applied to the truncated
projection xpg; and the boundary correction term which
only depends on values of g; along the boundary of region
B.

B. FBP Algorithms for Long-Object Problem

A blind use of the above FBP algorithm to the long
object having a large axial support compared with the
length of helix produces severe low-frequency artifacts [5].
This section describes two quasi-exact FBP algorithms
which are derived from the mathematical logic outlined
in Section II-C.

To describe the proposed algorithms, we need to define
a region on the detector plane called the region A(\). Its
definition is as follows. Let Pupin = (Umin(A), Vmin(A))
(or Pmax = (Umax(A),Umax(A))) denote the cone-beam
projection of the end point of helix @(Apin) (or @(Amax))
onto the detector plane D(X). We define the region A(\)
as a rectangular region bounded below by the straight
line v = vUpin(A) and bounded above by the straight line
¥ = Umax(A). Let xa(x)(u,v) denote the indicator function
of A(M\). In addition to the region B introduced to solve
the SO problem, this region A()\) plays an important role
in the proposed quasi-exact FBP algorithms for the LO
problem. By using A()), the first proposed algorithm is
summarized as follows.

<Algorithm for LO Problem 1 (Algorithm LO-1)>
[STEP 1] Weighting (Eq. (2))

[STEP 2] Computation of Ramp Filtering Term (Eq. (3))
[STEP 3] Computation of Boundary Correction Term

(7)

S(Ab)(svu7 /\) = CU(&M)QS@J% )‘) + CL(S’M)QIQL(S)tL7 )‘)

P (8)
1 0 [T (b) .
— dusS A
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(9)
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[STEP 4] Backprojection (Eq. (6))

The comparison between the Algorithm SO and the
Algorithm LO-1 shows that we only need to multiply
each cone-beam projection g; by the indicator function
Xa(n) before computing the boundary correction term
gf? in the LO problem. This can be done quickly in
numerical implementation because x 4¢) does not depend
on u and the explicit expression of x 4(y) is simple. Other
parts (weighting, ramp filtering, and backprojection)
do not need to be changed at all. Therefore, the
Algorithm LO-1 can be easily implemented if one has a
program for the Algorithm SO. Note that all the existing
algorithms (L-ROI, ZB and VC) need rather complicated
modifications in the structure of algorithms to deal with
the long-object.

An alternative form of the Algorithm LO-1 can be
obtained by performing the multiplication by x 4(x) before
computing both the ramp filtering term and the boundary
correction term. This leads to the following algorithm.

<Algorithm for LO Problem 2 (Algorithm LO-2)>
[STEP 1] Weighting

u,v)g(u, v, A) - (10)

R
UV = ———
gl( ) \/mXA(A)(

[STEP 2] Computation of Ramp Filtering Term (Eq. (3))

[STEP 3] Computation of Boundary Correction Term
(Egs. (4) and (5))

[STEP 4] Backprojection (Eq. (6))

Note that it is easy to verify that the Algorithm LO-1
and the Algorithm LO-2 produce a same reconstruction
in the central ROI covered by the helix. This is thanks
to the locality of ramp filtering. However, they produce
different reconstructions in the region close to the end
points of helix. The Algorithm LO-2 is also very simple.
The comparison between the Algorithm SO and the
Algorithm LO-2 shows that we only need to multiply
each cone-beam projection g by xa(r) before using the
Algorithm SO to deal with the long-object.

C. Outline of Algorithm Derivation

Due to the lack of space, we only outline the derivation
of the proposed algorithms. The algorithm derivation is



along the similar line to the derivation of the VC method
[5]. It proceeds according to the following two steps. The
first step is to construct the Radon algorithm by using
the modified Grangeat formula (the Grangeat formula [7]
which allows to combine triangular patches and half-planes
to compute the 3-D Radon derivative). The second step
is to reduce the Radon algorithm to the FBP form to
verify that unmeasurable parts of projections used in the
triangulation are unnecessary to reconstruct the central
ROI when the helix is long enough to cover the ROI.

Let us consider the reconstruction of single point 77
in the central ROI. Let H(E,Z) denote a plane having
the unit normal € and the radial distance . Let p(&,1)
denote the 3-D Radon derivative over II(£,1). From the
inversion formula of 3-D Radon transform, we know that
the reconstruction of f(7) needs p'(€,1) over a limited set
of planes:

P={IE)|l—e< -E<l+e €82 1R} (11)

where € is a small positive number [7]. By using this fact,
the procedure for the algorithm derivation is outlined as
follows.

[STEP 1] The triangulation for each II({,l) € P is
performed in the following way. Assume that the plane
II(£,1) intersects the helix at N points @(A1),...,ad(Ax).
As shown in Fig. 1(a), we consider that the first source
point @(A1) covers the lower half-plane which is below the
line connecting a@(A1) with a@(A2), the last source point
d(An) covers the upper half-plane which is above the line
connecting @(Ay_1) with @(An), and other source points
cover the triangular patches as in [2],[5].

[STEP 2] The mask function xc(x)(u,v) on the detector
plane D()) to achieve the triangulation defined in [STEP
1] is derived. The resulting mask function depends on the
source point @(A). The forms of the mask function xc(x)
are illustrated in Fig. 1(b).

[STEP 3] We use the mathematical logic similar to [5]
(reduction of the Radon algorithm to the FBP form)
to show that unmeasurable parts of projections (which
exceed the region B for the source points close to the
end points of helix) are unnecessary to reconstruct the
point 7. This clarifies that the filtered projections can be
computed according to the following steps. Projections
measured from the central part of helix are processed in
the same way as in the Algorithm SO because C(\) = B
for these projections. However, for projections measured
from the source points close to the end point of helix
@(Amin) O @(Amax), the boundary correction term must
be included only from the subset A(A) N dB. This is
because C(\) for these projections is different from B and
the corresponding boundary 0B stops at some point Py,
(or Ppyax) defined by the cone-beam projection of the
end point of helix @(Amin) (0r @(Amax)) onto the detector
plane D(\) (Fig. 1(b)). Therefore, the boundary term
from the missing boundary part must be excluded from

the computation when processing these projections. This
corresponds to truncate g; with the indicator function
Xa(xy) in the Algorithms LO-1 and LO-2. This is the
rationale behind the use of new mask function x4(y) in
addition to xp in the LO problem.
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Fig 1: Illustration of triangulation for plane H(g,l) and
the corresponding mask function xc(x)-

Half-Plane
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III. SIMULATION STUDIES

We compared the proposed algorithms with the VC
method [5] in terms of image quality, computational time,
and simplicity of implementation. The same numerical
phantoms as in [5] are used. The first phantom is the 3-D
Shepp-Logan phantom to confirm how each algorithm
reconstructs low-contrast objects. The second phantom
is the disk phantom to confirm how each algorithm
reconstructs high-contrast objects. These phantoms are
supported inside the cylinder of radius 100 (mm). The
number of helical turns is 2, the axial length of helix
is 150 (mm) (pitch 27h is 75 (mm)), and the radius of
helix is 350 (mm). The number of cone-beam projections
is 500 per turn and each projection consists of 256x93
detector pixels. Reconstructed images have 256 x 256 x 256
pixels. We have implemented the proposed algorithms as
follows. As remarked in [2],[5], all the above algorithms
are numerically unstable because they force to apply
the ramp filtering across the boundary of region B. To
overcome this numerical problem, we used the numerical
stabilization technique based on smoothing the indicator
function xp [2],[5]. This technique computes the filtered
projection ¢¥" + ¢f? in the proposed algorithms as a
sum of the three terms ggmp + gflgu + ggound which
can be computed in a stable way [2],[5]. Furthermore,
we implemented both the single-ROI and multi-ROI
algorithms proposed in [5].

Longitudinal slices of reconstructed images with the
proposed algorithms (LO-1,L0O-2) and the VC method are
shown in Fig. 2. For the Algorithm LO-1, we also show
reconstructed images with the multi-ROI implementation.
The proposed algorithms could reconstruct high-quality
images which are indistinguishable from those with the
VC method. The main difference among the Algorithms



Fig 2: Reconstructed images with the VC single-ROI (first column), the LO-1 single-ROI (second column), the LO-2
single-ROI (third column), and the LO-1 multi-ROI (fourth column).

LO-1, LO-2, and VC seems to be the region on which
accurate reconstruction can be achieved.  Figure 2
shows that the LO-1 can obtain accurate images on
a slightly larger region compared with the LO-2 and
VC. This is thanks to the fact that the LO-1 discards
less data compared with the LO-2 and VC because the
multiplication by x4(x) is applied only to the boundary
correction term. Computational times are summarized in
Table 1 (time for the approximate Feldkamp algorithm
is also shown for comparison). The difference of
reconstruction times among the LO-1, LO-2, and VC is
not so much mainly because the dominant computation
in all the algorithms is the 3-D backprojection which
is common to all of them. In terms of simplicity, the
proposed algorithms needed rather simple programming
to implement compared with the VC method. In fact,
a quite complicated routine to compute the boundary
correction term in the VC method (Appendix C of [5])
could be completely eliminated. Thus, we believe that the
proposed algorithms succeeded in dramatically reducing
the complexity of implementation compared with the
existing algorithms (L-ROI, ZB, and VC).

Table 1
Actual computational times measured by a SUN SPARC
ULTRA-1 workstation with 256 M-byte memory.

Feldkamp vC LO-1 LO-2 LO-1
(Full-Scan) | (Single) (Single) (Single) (Multi)
120(min) 412(min) | 301(min) | 296(min) | 263(min)

IV. CONCLUSIONS

The proposed quasi-exact FBP algorithms for the LO
problem are rather simple compared with the existing

algorithms (L-ROI, ZB, and VC). The algorithms
need only a few small changes to the quasi-exact FBP
algorithm for the SO problem derived by Kudo et al [2].
We will present additional simulation results with more
challenging Schaller’s head phantom at the conference.
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INTRODUCTION

Cone beam computed tomography (CT) based on non-
planar orbits has been an active area of research toward
the goal of producing an exact volumetric reconstruction.
To date, most reconstruction algorithms for non-planar
orbits have been based on the theoretical framework of
Tuy[1l], Smith [2] and Grangeat[3]. Of all the
investigated non-planar orbits, the helical scanning
geometry is most promising for clinical application since
it is easy to implement and natural for volume scanning
of the body.

Currently, multi-row detectors with only a few rows (e.g.
four) are widely used in clinical helical CT, and the
reconstruction algorithms involved differ only slightly
from the traditional fan beam methods. This
approximation produces minimal artifact in the
reconstruction because the cone angle is very small. In
order to increase the volume scanning speed and reduce
motion artifacts, and to make more efficient use of the x-
ray tube output, more and more detector rows will be
used. In the near future a point will be reached where the
z-divergence of the beam will become non-negligible.
There is a need, therefore, to develop efficient
reconstruction algorithms which account properly for the
cone beam scanning geometry.

Some approximate algorithms for helical cone beam
tomography have been developed[4,5,6]. They are
efficient and provide good temporal resolution because
only full scan or half scan data are used to reconstruct a
slice and the ramp filtered data remain bounded in the z
direction, keeping the computational intensity low. They
are approximate in nature however, and will produce
artifacts when the cone angle is increased.

Practical exact helical cone beam tomography algorithms
are made possible by the discovery that only the
truncated data within the region on the detector bounded
by the projections of the adjacent upper and lower turns
of the helix are required to obtain an exact reconstruction
[7,8], not the full data set as utilized in the theory
developed by Tuy, Smith and Grangeat. Quasi-exact
algorithms outperform approximate methods in terms of
reconstructed image quality, yet some researchers have
argued that exact algorithms have the disadvantages of
inferior temporal resolution and increased computational
intensity. We show that an exact algorithm can deliver
computational efficiency and temporal resolution
comparable to that achieved by approximate methods.
With continued research in this area, the advantages of

exact over approximate algorithms will become
increasingly evident.

Exact helical cone beam tomography algorithms can be
categorized as addressing the short object problem or the
long object problem. For the short object problem, the
axial extent of the helix is sufficient to cover the entire
object, providing adequate data for a comparatively
simple solution. For the more complex long object
problem, the helix extends only slightly beyond the ROI.
It is much more difficult to solve than the short object
problem due to the data contamination issue. From a
clinical standpoint, a solution to the long object problem
is required since only a portion of the patient should be
scanned to provide accurate images of the finite volume
of interest. Tam[7] first provided a solution for the long
object problem, but his algorithm required two circular
orbits at the end of helix which is undesirable in practice.
Several exact algorithms for the long object problem
have been developed which do not require the circular
orbits, but reconstruct the ROI using only the helical
orbit data[9,10,11].

In this paper, we present a new solution to the long
object problem using helical data only. It is based on the
method developed by Kudo, Noo and Defrise[8]. We
invoke the concept of accessory paths with upper and
lower virtual detectors having infinite axial extent. We
show that our approach has the advantages of ease of
implementation, good temporal resolution and
computational efficiency. The algorithm possesses the
filtered backprojection structure, which is very desirable
for practical implementation.

ALGORITHM

We propose an algorithm to solve the long object
problem for helical cone beam tomography using
accessory paths with virtual detectors of infinite axial
extent.

Fig. 1 illustrates the data acquisition geometry. The
source path () is a short helical segment of pitch 2771

and radius R defined by (1), containing a primary helix
(the solid path), a top accessory helix (top dotted path)
and a bottom accessory helix (bottom dotted path)
around a long object f(x, y, z) (the cylinder).

a(0) = (Rcos,Rsinb,h0)", (1)

where @ is the rotation angle of the helix.



The detector is normalized to the iso-center and its
coordinate system is defined by unit vectors g{ ,and gfv :

)

&, = (-cosnsiné,cosncosh,sinn)’ (2)
&, = (sinnsin@,-sinycosd,cosn)’ 3
n =arctan(h/R) @

g-:u is parallel to the helix tangent.

Our objective is to reconstruct a slice (the shaded ellipse
in Fig. 1) from the data collected on the source helix.
From short object problem theory, we know that it is
impossible to exactly reconstruct the slice without
scanning the whole object due to the data contamination
problem.

Our approach employs three different types of detector.
For the data collected from the primary path, we have a
masked detector (Fig. 2b) with the top and bottom
boundaries given by[8]:

2

U T ocetands

V.(u,)=h(l+ Rz)[z arctan(R )] (%)

__ uf f u, (6)
V.(u,) h(1+ T )[2 + arctan(R )]

where (u, v, ) is the rotated coordinate system defined
by:

u, =ucosn-vsinny (7
v, =usinn +vcosn ®)

so that u, is horizontal.

For the data collected from the top accessory path, we
use a detector (Fig. 2a) with no boundary on the top and
with a boundary at the bottom defined by (6) in order to
capture the entire upper portion of the object. For the
data collected from the bottom accessory path, we use a
detector (Fig. 2c) unbounded at the bottom with a
boundary at the top defined by (5) in order to capture the
entire lower portion of the object.

Before explaining our algorithm, we revisit an important
and remarkable property of the filtered masked
projection discovered by Kudo ef al. [8]. Namely, the
result of filtering the masked data can be represented as:

gF (uﬂ v, 6) = glf;unded (u7 v, 9) + gf;buunded (u7 Vv, 6) (9)

The bounded term results from ramp filtering the data
within the mask and the unbounded term results from the
unbounded filtering of the boundary data. This property
is the key to an understanding of our algorithm.
According to the above property, we know that for the
central detector (the standard PI detector, Fig. 2b), data

on both boundaries will contribute to the unbounded part
of the filtering result, but for the upper detector (Fig. 2a),
only the data on the bottom boundary will contribute to
the unbounded term and for the lower detector (Fig. 2c¢),
only the data on the top boundary will contribute to the
unbounded term.

The following conditions on the primary path and
accessory paths must be met in order for our algorithm to
succeed. The primary path must be long enough so that
the ramp filtered part of the projections collected from
the accessory paths do not contribute to the reconstructed
slice. The accessory paths (the dotted paths in Fig. 1)

must be of length (r + 2arcsin(£)) at both ends of the
R

primary path, where r is the FOV radius. When these
conditions are met, we can obtain the Radon derivatives
needed to reconstruct every point in the slice based on
the whole object. A typical data combination is shown in
Fig. 3. Notice that for points on the accessory paths, one
end of the source rays’ envelope opens to infinity
because we employ a virtual detector of infinite extent
above and below the slice. But remember, the infinite
detector is virtual and the unlimited data is not available
in practice. Fortunately, because of the filtering property
we mentioned earlier, only the data on the bottom
boundary of the upper virtual detector and the data on the
top boundary of the lower virtual detector will become
unbounded after filtering and contribute to the
reconstruction of the slice. The ramp filtered portion of
the filtered projection from the accessory paths will not
contribute to the reconstructed slice. Therefore, only the
data on the boundaries of the upper and lower virtual
detectors are required for exact reconstruction of the
slice. These data are available from the primary path
itself due to the property that the integral over a PI line
can be accessed from either of the two source points that
define the PI line (Fig. 4). Thus, the slice of interest can
be reconstructed from the primary path data alone.

Explicitly, we can reconstruct the slice using the
following three steps:

* Fully filter the projections (bounded term +
unbounded term) obtained from the primary
path and backproject the filtered results into the
slice.

* Obtain the boundary data for the accessory
paths, do the filtering (unbounded term only)
and backproject the result into the slice.

* Add these two contributions to get a fully
reconstructed slice.

If we need to reconstruct an ROI in a long object, we can
reconstruct every slice in the ROI using the above
approach.

Our algorithm has the following advantages:



e Tt is local. Every filtered projection contributes
only to a few slices and it is not necessary to
extend it to cover the entire ROI. This property
makes the computational efficiency comparable
to the approximate methods.

e It has good temporal resolution: In order to
fully reconstruct a slice with the parameters
used in medical CT, we require only about one
turn of helical data.

e It is relatively easy to implement, requiring only
slight modifications to the short object
implementation.

*  Only helical data is needed.

e It possesses the filtered backprojection
structure.

The algorithm can be made global if the filtered
projection is extended sufficiently to contribute to the
reconstruction of the whole ROI, but this increases the
computational intensity and reduces the temporal
resolution.

The pitch of the accessory paths can vary. Our algorithm
is equivalent to Kudo’s virtual circle algorithm [10]
when the pitch of the accessory paths becomes 0
although our derivation differs from that of Kudo. We
calculate Radon derivatives based on the whole object
while Kudo calculated Radon derivatives based on the
ROI defined by the two virtual circles.

In our implementation we chose the pitch of the
accessory paths to be the same as that of the primary path
making the mask B invariant which results in a single
form of the boundary term. This makes it easier to
localize the reconstruction and to implement the
algorithm than is the case using Kudo’s virtual circle
approach [10].

SIMULATION RESULTS

We reconstructed the 3D Shepp-Logan phantom[12]
(Fig. 5, display window [1.01 1.04]) and a disk
phantom[8] (Fig. 6, display window [0.3 1.7]) to test the
ability of the algorithm to reconstruct low contrast
objects and objects with high frequency components in
the =z direction, respectively. We added two
homogeneous cylinders at both ends of the phantoms to
simulate the long objects. As demonstrated in the figures,
both phantoms were reconstructed with satisfactory
results.
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Multifrequential Algorithm for Fast 3D
Reconstruction

Thomas Rodet, Pierre Grangeat and Laurent Desbat

Abstract— Some recent medical imaging applications, such
as functional imaging (PET and SPECT) or interventional
imaging (CT fluoroscopy) involves dynamic data. The image
reconstruction time must be reduced. For that purpose, we
developed a new fast algorithm for dynamic reconstruction
based on frequential hierarchical reconstruction.

Our algorithm performs an indirect subband decomposi-
tion of the image f to be reconstructed (f = ) f;) through
the filtering of the projection Rf. The subband images f; can
be reconstructed on an undersampled grid without informa-
tion suppression. In order to reduce the computation time,
we undersample the number of projections and we choose
them in accordance with the undersampled grid. But image
compression can also be made directly in our algorithm by
elimination of some frequential components with low infor-
mation content.

Keywords— Fast reconstruction algorithm, frequential de-
composition, angular undersampling, computation compres-
sion.

I. INTRODUCTION

T acquisition systems involve increasing amounts of

data. Moreover, for many medical applications, the
computation time must be lowered. There are even some
applications for which real time is required. Two main
fields of medical imaging need dynamic reconstructions,
namely functional imaging (PET and SPECT) and inter-
ventional imaging (CT fluoroscopy, 3D guidance) [1], [2],
[3]. Fast tomographic reconstruction is currently a very
active research domain [4], [5], [6].

In this paper, we present a fast algorithm for dynamic
reconstruction. In our reconstruction algorithm, we imple-
ment the two following ideas to speed-up the reconstruction
time: the first is to reconstruct some frequentials compo-
nents with reduced number of projections, the second is to
achieve computation compression. The frequential recon-
struction allows to reconstruct each frequential component
on an undersampled grid, and to use only a lower num-
ber of undersampled projections. Our algorithm associates
this undersampling approach with computation compres-
sion (see [7]). The computation compression is based on
the data compression principle. Our algorithm can gener-
ate directly compressed data.

In the first section, we introduce our notations. In the
second section, we present the frequential reconstruction

T.Rodet and L.Desbat are with the TIMC-IMAG, UMR CNRS
5525, IAB, Faculte de medecine, UJF 38706 La Tronche Cedex,
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principle. Then, we expose the speed up factors of our
algorithm: the angular undersampling, the computation
compression and the block processing. The last section
shows numerical applications of our algorithm on both a
static 3D phantom and a dynamic 2D phantom.

DATA Rf

Ng FFT1D(N)

[ INDIRECT DECOMPOSITION }

[ QUANTIFICATION ]

...... 2B - Ng IFFT1D(N)

BACKPROJECTION

on a B? Undersampled grid

using only the not zero projection
fo o

[ UNCOMPRESSION J

IFFT2D N x N

[ RECONSTRUCTED IMAGE f J

Fig. 1. Our algorithm

II. NOTATIONS

We define the Fourier transform f of a function f €
L'(R?) by:

jw) = o

t —il/.tdt

2 R2 ( )e
Let s € R, and § € S!, where S! is the unit circle, we
denote the Radon transform R by:

Rf(6,5) = / £(s6 + y)dy.

yehL

We denote by R! the backprojection operator and by I
the ramp filter. We define the functions g; € S(R?) as
the inverse Fourier transform of adjacent band indicators
such that Y27, g; is the indicator function of a domain

covering the essential support of the function f . Then, we
denote each elementary frequential component of f: f,, =

fxg1,..., fg. = f *9n.

2 N N
B? FFT2D & x &



III. RECONSTRUCTION ALGORITHM USING A
DECOMPOSITION STEP

The main idea of our approach is to reconstruct B2 fre-

quential component f,. of f independently using f,, =
f *g; = RFI(Rf * Rg;) (see [7]). This allows us to un-
dersample the number of projection and to compress the
computation like in data compression.
We want to reconstruct B? frequential components of f
without knowing the image f, but only its projections Rf.
Also we must do an indirect decomposition of f through
Rf. The projection slice theorem (see [8]) yields a direct
relation between f and R f Thus we can find a filter Rg;
to apply to Rf which leads to the decomposition of f into
the sum of f,, (for a theoretical justification see [7] ).

<
<

)

=}
o

L A e
@) |
|

Fig. 2. Indirect decomposition scheme
A. Indirect decomposition step

The step of indirect decomposition (see figure 1) consists
of generating the Rf,, with j € [0, B?] by filtering Rf. We
implement this filtering in the Fourier space to reduce the
computation time of this step. We can see on the figure 2a
the Fourier transform of one projection (Rf(6;)) is local-
ized on a line in the Fourier space. The decomposition of
this projection on the indicator function g; is the intersec-
tion between the line and the square §; (see the figure 2a).
On the figure 2b , we can see the result of the indirect de-
composition R f . Let us underline that R f ;(0) is equal
to zero when the 11ne R f (8) do not intersect the square g;.

We will use this property in the next section to reduce the
computation time.

B. Backprojection step

In this step we backproject the B? sets of projection
Rf,, to obtain the frequential components f,,. According
to the sampling theory, the function f,, can be represented
by B? times less pixel than f. Indeed the undersampling
by B? of fg; in the direct space leads to a periodisation of
g; in the Fourier space. The function g§; is localized on a
little square. When the sampling rate is equal to B pixels
along each axis, squares do not overlap. Thus the under-
sampling by B? preserves all the information contained in
the function f,.. Thus we can backproject Rf,. on an un-
dersampled grid. Finally, as we make B? backprojections
on B? undersampled grids, the backprojection step com-
putation cost is the same as for a classical algorithm.

Yy

Fig. 3. Angular interval

IV. ANALYZE OF THE SPEED UP
A. Angular undersampling

The projections of the frequential components fy, are
usually equal to zero for 6 outside of an relative small i/n\ter—
val 0 ¢ [Omin,Omaz] (see figure 3, VO ¢ [Omin, Omaz); fos =
0). We use this property to reduce the backprojection time.
In our algorithm when we reconstruct the frequential com-
ponents f,., we backproject only the angle between the cor-
responding 0, and 6,,,,.. The speed up obtained depends
on the frequential component. For example, we backpro-
ject all angle for f,, and only approximatively % angles
for the frequential component f,,_,, if B is large (Ng de-
notes the number of projections). To analyze the speed up
factor obtained by this angular undersampling we count
the contribution of the projection to the backprojection of
each frequential component. Each projection Rf(6) con-
tributes to less than 2B frequential components (see figure

2). Thus the number of contributions per bloc is less than
2BN;/B? = 2N,/B. Thus we win at least a factor 5 com-
pare to the backprojection seen in the previous paragraph
The elimination of the zero projection can be considered
as an angular undersampling. If we respect the sampling
condition to reconstruct f, and if we reconstruct the fre-
quential component f,. on a B? undersampled grid, we can
backproject B times less projections.



B. Computation compression

The computation compression will have the same fun-
damental steps as the data compression. We want also
to preserve only the pertinent information and we want to
code it with as few bytes as possible. To achieve this result,
we decompose the image f in frequential components f,,,
and we compute only the components containing pertinent
informations. We denote “quantification”, the elimination
step of frequential components (see figure 1). This step
corresponds to ||f - §;||2 < €, where the parameter € > 0 is
given and controls the compression rate. Thus, the num-
ber of components is reduced from factor depending on the
value e. As for data compression, information will be lost
if € becomes high.

C. Block processing and parallelism

Most of uniprocessor systems have hierarchical mem-
ory. It is composed of various levels of cache memory, a
main memory and disk storage. Movement of data be-
tween two levels in the hierarchy represents latency time
cost. To compute efficiently, we must reduce data move-
ment. Our approach allows to reconstruct some undersam-
pled pictures. If an undersampled picture can be contained
in cache memory, the data movement are minimized. Our
approach allows to adapt the reconstruction computation
to the size of the cache memory and thus to the computer.
It is the well known block effect. Because our algorithm
is naturally divided on B? elementary reconstructions, it
can be easily adapted on multiprocessor systems. Owing
to the block structure data movement between processor is
minimized. In shared memory system, data movement be-
tween processor is made through the main memory. These
access are limited band width, thus efficiency is improved
by reducing memory access in this case too. Our algorithm
natural block structure yields efficient computations.

& o

Fig. 4. Reconstruction of a volume 512x512x 32: reference (left), our
algorithm with 64 frequential components (center), difference (right).

V. APPLICATION

In this section, we make numerical experiment on two
types of phantom: a 3D static phantom to evaluate the op-
timal number of frequential components and a 2D dynamic
phantom to obtain the maximum performance of our algo-
rithm.

A. Static phantom

For our first test, we reconstruct a 3D static phantom f
(see phantom definition Table I). The reconstructions are

Sphere Center (mm) Radius(mm) | Attenuation
number X y Z r At

1 0.0 | 0.0 | 0.0 200 15

2 0.0 | -100 | 0.0 10.0 35

3 -100 | 0.0 | 0.0 20 35

4 100 | 0.0 | 0.0 40 35

) 0.0 | 100 | 0.0 80.0 35

TABLE 1

Definition of our 3D phantom

calculated on a 512 x 512 x 32 voxel grid (with x, y and z
resolution equal to 1,04 mm), using a subset of the projec-
tions collected on 512 angles, uniformly spaced over [0, 7.
We compare our reconstruction with a classical filtered
back projection (FBP) algorithm (fig. 4). We observe some
artifact on the difference image caused by numerical ap-
proximation, but in the case of 64 frequential components,
the level on these artifacts is less or equal to 1 %. To

CPU time (9)

780)
e~
g5 —
g
8a)
B —
450 —
4o —
|
e
260)

T T T T T T
1 4 16 64 256

Number of frequential components

Fig. 5. Reconstruction CPU time of a volume 512 X 512 x 32

highlight the angular undersampling effect, we execute our
algorithm with different numbers B? of frequential compo-
nents without quantification. Indeed, we have seen in part
IV-A that the speed up factor is proportional to B. Theo-
retically, the CPU time becomes shorter with big numbers
of frequential components. The CPU time decreases up
to 64 frequential components but increases afterwards (see
figure 5). The first part of the curve is explained by angu-
lar undersampling described in part IV-A. The second part
of the curve is explained by supplementary computations
induced by our approach. Indeed, we can see on the figure
1, that the number of inverse Fourier transforms is equal to
Ny - 2B instead of Ny in a classical algorithm. This effect
becomes dominating for B2 > 64.

B. 2D dynamic phantom

For our second test, we reconstruct a 2D dynamic phan-
tom composed of 32 images f; with ¢ € [0,31] (see phantom
definition Table IT). The phantom motion is a translation
of 3 mm per frame along the y axis. In this case, the per-
tinent information is restricted to one oblic plane in the
spatio-temporal Fourier domain [9]. Thus, this dynamic
data contains a low number of pertinent information: a
lot of frequential components can be eliminated. The
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Circle Center (mm) Radius(mm) | Attenuation
number X y r At
1 00 | -454+3 x i 200 15
2 0.0 | -145+3 x4 10.0 35
3 -100 | -45+3 x4 20 35
4 100 | -454+3 %1 40 35
5 0.0 95+ 3 x i 80.0 35
6 00 | -454+3 x i 2.0 60
TABLE II

Definition of our 2D dynamic phantom: with i € [0,31]

32 reconstructions are calculated on a 512 x 512 pixel grid
(with x and y resolution equal to 1,04 mm), using the same
parameter as the previous experiment. During the recon-
struction we decompose each f; in 64 frequential compo-
nents. To highlight the quantification effect we reconstruct
the image sequence with two configurations: the first re-
construction with 38% of components (see figure 6b and
¢) and the second one with 22% of components (see figure

6d and e). The results are summarized on the table III.
Types of % of CPU | speed | relative
algorithm | components | time up L, error

FBP 100 754 1 0%
Our 100 290 2.6 1.09%
38 200 3.8 1.17%
algorithm 22 169 4.5 1.54%
TABLE III

CPU time and quality of dynamic reconstruction

We can observe that the first configuration allows to elim-
inate 62% of frequential components without deterioration
of the image quality. If 78% of components are eliminated,
pertinent information is lost (see figure 6e): some artifacts
appear in images. Even if a large number of components
are eliminated, the speed up factor is not very high. The
computation compression is thus only a secondary speed
up factor. This can still be interesting for some real time
applications, because we can adapt image quality for cpu
resource.

VI. CONCLUSION

Our subband Fourier decomposition speeds up the 3D
reconstruction. Moreover a compromise between speed up
and image quality can be improved through the compres-
sion factor. Alternatively decompositions such as Cosinus,
Wayvelet or Karhunen Loeéve decomposition could also be
used.
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Background

At the previous Fully 3D meeting we presented the
concept of the 'planogram' data format for fully-3D imaging.
The planogram data format is a generalization of the 2D
linogram data format of Edholm et al. [1, 2]. This planogram
format is based on the native acquisition geometry of planar
detectors, illustrated in figure 1, where the natural rectangular
detector coordinates are given by (Xdl,ydl) and (Xd Z’de)
for two individual detector events that determine a line of
response (LOR).

We can parameterize the LOR orientation by the
coordinates (U,U,,V;,V,) where U = (X4 — Xg,) /2,
W = (Va1 *Ya2) /2, Vi = ~(Xg +Xg2) /2. and
V, = (Y4, = Yq1) /2. In this parameterization we assume
the detectors are separated by unit distance so (V,,V,) are the
tangents of the angle of the LOR projected onto the X—Y
and Y — Z planes, respectively relative to the Y axis. We can
then further parameterize the LOR w.r.t. the Y-coordinate as
U =X+V,Yand U, =Z+V,Y.

If we regard a fixed (.r, y, ), then the subset of LORs
passing through that point will appear as a 2D plane in the
(24, 2,,1, v, )-space, thus the choice of the term 'planogram’
for the data acquisition histogram.

In this case the measured line integral data are defined,
after appropriate scaling by ((1+ V12 +V§ )_1/2) (determined

by the angle between the detector surface and the unit normal
vector), as:

G (U, Uy, V3, V,) = I f(x,y,2)dy

o h (1)
= I f(ul —Viy,Y,U, _sz)dy

a2

where we now use X=U —V;Y and Z= U, —V,Y. We can
also define backprojection as:

o 00

B(xY.2) = [ [ G(X+Wy.Z +y Vv dvdv, )

—00 —00

To adequately sample the function f (X,Y,Z), we assume the
data has been collected from a second detector position
rotated about the Z-axis by 90 deg, so that U, =Y —V,X and
U, = Z—V,X.

| detector 2

Xd2

B B
detector 1

event 1

Figure 1. Coordinates used to index a LOR between two detector elements on planar detectors.

This work is supported by NIH grant CA80943.



Then by symmetry we have:

O, (U, Uy, V,V,) = I f(x,y,2)dx
v - ©

= J’ f (XU, +V,X,U, +V,X)dx
a2
where now Y=U +V,X and Z=U, +V,X. For this
position we define backprojection as:

b(xy,2) = [ [ Gy ~vix.Z VXV, Vo) dvidv, ()
Two key properties of the planogram data formats are
based on Fourier transform relations. We define:

0 0 0 00

Guin(UpU, W V,) = I I I I 0 (U, Uy, V3, V)

Q)
g A2 VI Y2) gy gy v, v,
and
BLlOl(X,y,Z = I I b(x,y, Z)e-Zi TOX+2Z) G4y iz (6)

where the subscript indicates w.r.t. which variable the
Fourier transform has been taken.

The quadruple integral in equation (5) is over the
(24, 2,,v;,v,) domain covered by the pair of rectangular
detectors. The limits are implicitly extended to the whole of

R Substituting equation (2) into equation (6), and by
symmetry for equation (4), we have the surprising results
that,

Buat(X.Y.2) = Gun(X,Z,-yX,-y2) - (7o)
and

BZ,Oll(X’Y’ Z) = C;2,1111(Y’Z’ XY’ XZ) (7b)

The results are a case of the 4D version of the central
section theorem. Equation (7) indicates that fully 3D
backprojection can be performed with only using Fourier
transform operations. An algorithm for analytic
backprojection is:

1 .Compute the 4D Fourier transform

G (UpU, 1 V,).
2. Foreach Y;:
o interpolate Bml(x,yi,z) using equation (7a).
o compute the inverse 2D Fourier transform to obtain
bl(x, yi,z).
3. Repeat step 2 for Gz;Llll(U1’U27V1’V2) , using each X;
to interpolate 82,011(Xi ,Y,Z) using equation (7b).

We have presented results showing that this
backprojection method offers speed improvements of
approximately 15 compared to standard fully 3D sinogram

methods [3]. These speed improvements can be further
leveraged by the use of readily available FFT processors.

Application to iterative reconstruction methods

To investigate the application of this approach to iterative
methods we make two observations:
1. Equation (7) (backprojection) does not require that the
data are non-truncated.
2. If we compute the 2D Fourier transform of equation (1),
we derive a version of the 3D central section theorem:

Gj.noo(Ul’U 2’V1’V2) =FU,vU, +v,U,U,) ®
with a similar version for G2,1100(U1’U 2,Vl,Vz) )

Equation (8) implies a fast method for forward-projection,
so from equations (7) and (8) we thus have methods for fast
forward-projection and backprojection. These are suitable for
incorporation into the 3D-OSEM algorithm [4, 5], represented
here in two steps:

(k) — (k)
i Zaij’fj’

f e = z . QZ a, ?'I‘E

Sy

)

where f j(k) is the K-th estimate of the value of image voxel |,

is the
K-th estimate of the value of image voxel j. The probability
of an event from image voxel | being detected in planogram

g; is the measured data in planogram bin i, and gi(")

bin | is given by @; using those LORs comprising the data

subset § [6]. The first part of equation (9) can be regarded
as a forward-projection, which can be computed with equation
(8). Typically unmeasured (truncated) data are also estimated,
which can be discarded. The portion within braces of the
second part of equation (9) can be regarded as the
backprojection of the ratio of the measured/estimated data.
This can be computed using equation (7). We note that this
approach corresponds to using a line integral model of the & i

and that using equations (7) and (8) does not strictly
correspond to the same &; due to numerical discretization

errors, that is we are using un-matched backprojector/forward
projector pairs.

Implementation

The accuracy of using equation (8) for forward-projection
is illustrated in figure 2.

The version of 3D-OSEM described by equation (9) was
implemented using equations (7) and (8) for backprojection
and forward-projection. The use of two detector positions
leads to a simple sorting of the data into two subsets. The
results of this approach are illustrated in figure 3. We note
that the use of only two subsets is not an optimal
implementation as figure 3 that 16 iterations are required to
reach a minimum RMS error estimate.
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Figure 2. Forward projection planogram data using equation (9). Solid lines in the image indicate the positions of the profiles
shown on the right for the Forward projected data (dotted line) compared to the original simulated planogram data (solid line).
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Figure 3. 3D-OSEM method applied to a noiseless spherical object with imbedded hot and cold spheres for two subsets with up

to 20 iterations.

This approach can be used for any iterative method using
repeated 3D backprojection and forward-projection. We will
present further results on the relative timing of this approach
for iterative 3D reconstruction methods as well as the
performance in the presence of statistical noise and with
increasing numbers of subsets.
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Abstract

The RSH SPECT scanner provides parallel-beam attenu-
ated projections for a fully 3D acquisition geometry. The
geometry can be represented by circles on the unit sphere
of projection directions, one circle for each position of the
detector head. Unlike most other fully 3D geometries this
one is particularly challenging because there are no 2D
subsets in the data. When no attenuation is present, it
is well-known that an unmeasured projection can be syn-
thesized if it lies inside one of the measured circles. The
main result of this work is that under some assumptions
on the attenuation distribution, eattenuated projections
within a circle can be synthesized from available attenu-
ated projections. One consequence is that RSH SPECT
projections can be rebinned into a conventional SPECT
geometry for which analytic attenuation correction tech-
niques are available.

1 Introduction

In Single Photon Emission Computed Tomography
(SPECT) imaging the objective is to visualize the concen-
tration of a radioactive tracer within the 3D body under
investigation. The limitations in SPECT are essentially
due to attenuation of the photons and to the poor sen-
sitivity of the collimator-detector system. A number of
researchers have been considering alternatives to the con-
ventional parallel-hole collimator (figure 1a).

The use of a rotating slant-hole (RSH) collimator with
two (figure 1b) or four segments significantly increases the
detection sensitivity by allowing a higher photon count
during the same acquisition period [1]. The collimator-
detector system is sucessively placed at different angular
positions around the body to be studied. For each of these

*This work was partially supported by the National Institutes of
Health, grant number R01 HL55610.
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Figure 1: Different types of collimators. a) conventional
parallel-hole collimator, b) RSH collimator.

positions, the collimator is rotated about its center, while
allowing several projections (two or four according to the
collimator used) to be acquired simultaneously. This ac-
quisition mode constitutes the RSH SPECT geometry as
described in [1].

The RSH SPECT scanner provides a set of attenuated
projections. The exponential X-ray transform is a math-
ematical tool used in SPECT reconstruction for modeling
and correcting for attenuation. Using the exponential X-
ray transform, it is possible to reconstruct the emission
map with attenuation correction, assuming the attenua-
tion is constant in the emission region. Attenuated pro-
jections can be converted to exponential X-ray projections
using a well-known point-by-point scaling [2]. Moreover,
even if the attenuation map is unknown, the consistency
conditions of the exponential X-ray transform provide an
effective method to find the scaling coefficients [3].

In two-dimensions (2D), image reconstruction from ex-
ponential X-ray projections has been thoroughly studied
over the past twenty-five years and is now well under-
stood, especially due to the works of Tretiak & Metz [9]
and Pan & Metz [10]. A very recent work [11] provides an
inversion formula for the case of only 180-degrees of expo-
nential data. The acquisition geometry for RSH SPECT
is a fully 3D geometry for which an inversion formula for



the X-ray transform has not yet been established. To
our knowledge, only a few simple geometries have been
treated. In [4] and [5], the exponential projections must
be finely sampled on the unit sphere while the algorithm
described in [6] only handles collections of projections on
any subset of the unit sphere described as a union of great
circles. Currently, we do not know if it is possible to ob-
tain exact reconstructions from more general collections,
such as those satisfying Orlov’s condition [7] for the non-
attenuated case.

We give a description of the general RSH geometry in sec-
tion 2. In section 3, we generalize Orlov’s result [7] and
establish a rebinning technique which allows us to calcu-
late new exponential projections (with any attenuation
coefficient) from exponential projections given on a circle
in the RSH geometry. Finally, in section 4, we use these
new theoretical results to obtain a method of exact recon-
struction from a set of complete exponential projections
(complete in the sense of Orlov [7]) for the RSH SPECT

geometry.

2 The RSH SPECT Geometry

Figure 2 illustrates the RSH SPECT geometry. In this
figure, O is the origin of the unit sphere S?. The orien-
tation of the detector with respect to the origin is given
by its unit normal vector ¢;. We assume N different po-
sitions of the detector (i = 1,2,...,N). Also, we assume
that for each position 7 of the detector, the collimator has
a slant angle equal to a;. The unit vector n defines the
direction of photon propagation through the collimator.
When it effects a rotation of 360 degrees about itself, the
vector n describes, on the unit sphere, a circle C; of angu-
lar aperture a; and whose axis of symmetry is the vector
¢;- The RSH SPECT geometry is mathematically defined
by the trajectory €2 on the unit sphere corresponding to
the union of all the circles Cj.

After conversion from attenuated projections, the data
available for image reconstruction are the exponential X-
ray projections

“+oo
pu(ﬂ,é):/ dt f(s+tn)e ™, sn=0

—0o0

(1)

for the directions n € 2. The 3D image to reconstruct is
f while p is the known, constant attenuation coefficient.

)

Figure 2: Illustration of the RSH SPECT geometry.

3 Theory

We show here that it is possible to calculate any paral-
lel projection (with any finite attenuation coefficient ;)
of whose direction « is situated in the region of the unit
sphere bounded by one of the circles making up 2. In
section 4 we show how the rebinning technique can be
used to create, from the RSH SPECT data, a collection of
exponential projections corresponding to a conventional
parallel-hole SPECT geometry for which an exact inver-
sion formula exists. An example reconstruction is given.

Let us consider one of the circles C; making up €2 and let
a be a unit vector situated in the region of §? bounded
by C;. Figure 3 illustrates the situation. We use C(a) to
denote the great circle orthogonal to a and we introduce
four unit vectors a, b, # and QL all lying on the great circle
C(a). The vectors @ and b are defined mathematically by

C X a

a= , b=axa (2)
lle; x a|
while
0 = cosfa+sinfb (3)
QJ‘ = —sinfa+cosfb

where 0 belongs to the interval [0, 27]. For the case where
the vector a corresponds to ¢; we choose g arbitrarily on

C(a).

The great circle orthogonal to 8, denoted C(f), cuts the
circle C; at a point n given by

n = cos(6) a +sinv(6) 6 (4)

where (0) €]0,n[ for all # € [0,2n]. We show that the
function (#) is given by

»(O) — sin(ka;) cosf + \/sin2 a; — sin®(ka;) sin® @
tan =

2 cos a; + cos(ka;)

(5)



Figure 3: Rebinning from a set of exponential projections
corresponding to a circle C;.

where (ka;) is the angle between ¢; and a (k € [0,1]). Fi-
nally, we introduce the vector n = xn = —sin () a+

cosp(0) 0.

From exponential projections p,(n,s) known for n €
C;, it is possible to calculate the exponential projection
Py, (@, s) for any finite value py of the attenuation coeffi-
cient. To this end we show that

—+oo —+oo

struct p,, (a, s) from g(6,1):

2m

Pun (@, 8) = / df g7 (8, 5.8) e ®)22 (8)
0

where ¢F(#,1) is given in the Fourier domain by

G¥(8,0) = G(,0) H(6,0) and

H@@={lﬂ‘“@WHM@ itlo| > ()] 2n)
(9)

where p5(0) is the derivative of p4(0) and j = /—1.

We note that although any value of p; can be used in
principle, it is safer in practice to use p; = p to control
the behavior of ps(8).

4 Simulations and Results

In this section, we study an example RSH SPECT geom-
etry. The set €2 under consideration consists of 3 circles
whose centers ¢; are situated on the great circle C(e,) at
regular intervals of 60 degrees and with a slant angle of
30 degrees (for 1 = 1,2,3). Figure 4 illustrates the situa-
tion. According to Orlov [7], this set is complete because
all great circles on the unit sphere intersect 2. An exact
reconstruction is therefore possible in the non-attenuated

/pu (a lé)—i—sé)J‘)e_“z(G)sds _ /pu(” w_{_th_)e—ud(e)tdtcase. We show below that exact reconstruction is also
1\= "= — L R =

—0o0 —0o0

(6)

where

i cos $(6) —
sin 4 (0)

B — p1 cosp(8)

g ond a0 =

p2(8) =
(7)

for all (8,1) € [0, 27 X ] — 00, +o00[. The expression on the
left of (6) is the 2D exponential Radon transform (with
attenuation py depending on projection angle, and which
we will denote AD-ERT for Angle Dependent Exponen-
tial Radon Transform) of the projection p,, (a,s) while
the expression on the right constitutes a sample of the
2D exponential Radon transform (with attenuation g
depending on angle) of the projection p,(n,s). A sample
of the AD-ERT of the projection p,, (a, s) is therefore ob-
tained by judiciously integrating in the plane of one of the
available projections. By applying the relation (6) for all
(0,1), we obtain the AD-ERT of the projection p,, (a, 3),
which we denote g(#,1). The problem of the inversion of
the AD-ERT was resolved in [8], and allows us to recon-

possible for the attenuated case.

Figure 4: An example RSH SPECT geometry.

There are 3 distinct positions of the detector and we have
simulated 32 angular positions of the collimator rotating
about its own axis, which makes a total of 3 x 32 = 96
simulated attenuated projections for this RSH SPECT
geometry. A phantom modeling the heart was used for
the emission map. It was composed of three ellipsoids,
two of which modeled the ventricles with 20% of the spe-
cific activity of the myocardium. The attenuation map



was modeled with 4 ellipsoids, representing the thorax,
the two lungs, and the spinal column. Figure 5 shows
the emission and attenuation maps for two slices in dif-
ferent orientations. Each attenuated projection was sam-
pled on a grid of 100? pixels of side 1.5 mm. The atten-
uation coefficients being constant in the emission region,
we converted the attenuated projections to exponential
projections with g = 0.15/cm.

o= 97
o= 97

£ = 104

£ = 104

Figure 5: Top: Emission and attenuation maps superim-

posed. Bottom: Attenuation map only.

We applied the rebinning method (with p; = p) to cal-
culate the exponential projections p,(c,s) for 181 direc-
tions a uniformly sampled on the half of the great circle
C(e,) with an angular step of 1 degree. The calculated
projections were reconstructed on a grid of 100? pixels of
side 1.5 mm. The details of the reconstruction algorithm
will be given at the conference. Figure 6 shows one of
the 181 exponential projections calculated by the rebin-
ning method. This figure illustrates the exactness of the
rebinning method.

The 181 calculated exponential projections constitute
a set of projections in the conventional (180-degree)
parallel-hole collimator SPECT geometry. For this con-
figuration an exact inversion formula now exists ([11]).
We have applied this algorithm to reconstruct, slice by
slice perpendicular to e¢_, the image f on a grid of 1003
voxels of side 1.5 mm. The quality of the reconstruction

Figure 6: Illustration of the rebinning method (k = 0.5).
Left: Ideal projection. Right: Synthesized projection.

given in figure 7 illustrates the efficacy of the reconstruc-
tion method.

Reconstructions with simulated noisy data have also been
successful, and reconstructions with data from a proto-
type RSH SPECT scanner is being submitted to the 2001
IEEE MIC conference.

Figure 7: Heart phantom reconstruction for 4 = 0.15/cm.

References

[1] R. Clack, P.E. Christian, M. Defrise, A.E. Welch,
“Image reconstruction for a novel SPECT system
with rotating slant-hole collimators”. In Conf. Rec.

1995 IEEE Med. Imag. Conf., 1948-1952, 1996.

[2] A. Markoe, “Fourier inversion of the attenuated X-
ray transform”, STAM J. Math. Anal., Vol. 15(4),
718-722, 1984.

[3] C. Mennessier, F. Noo, R. Clack, G. Bal, L. Desbat,
“Attenuation correction in SPECT using consistency



[4]

[5]

[6]

7]

18]

[9]

[10]

[11]

conditions for the exponential ray transform”, Phys.

Med. Biol., Vol. 44, 2483-2510, 1999.

I.A. Hazou, D.C. Solmon, “Inversion of the exponen-
tial X-ray transform. I:Analysis”, Math. Methods in
the Applied Sciences, Vol. 10(10), 561-574 (1988).

Y. Weng, G.L. Zeng, G.T. Gullberg, “Filtered back-
projection algorithm for attenuated parallel and
cone-beam projections sampled on a sphere”, in
Three-dimensional Image Reconstruction In Radia-
tion and Nuclear Medicine, ed. P. Grangeat and J.-L.
Amans (Dordrecht: Kluwer), 19-34, 1996.

J.-M. Wagner, F. Noo, “T'TR algorithm for the in-
version of the exponential X-ray transform”. In Conf.
Rec. IEEE 2000 Med. Imag. Conf., to be published.

S.S. Orlov, “Theory of three dimensional reconstruc-
tion. 1. Conditions of a complete set of projections.”,

Sov. Phys.-Crystallogr., Vol. 20, 312-314, 1975.

P. Kuchment, I. Shneiberg, "Some Inversion formu-
las in the Single Photon Emission Computed Tomog-
raphy", Appl. Anal., vol. 53, 221-231, 1994.

O. Tretiak, C. Metz, “The exponential Radon trans-
form”, STAM, J. Appl. Math., Vol. 39(2), 341-354,
1980.

C.E. Metz, X. Pan, “A unified analysis of exact meth-
ods of inverting the 2D exponential Radon tranform,
with implications for Noise control in SPECT”, IEEE
Trans. Med. Imag., vol. 14(4), 643-658, 1995.

F. Noo, J.-M. Wagner, “Image reconstruction in 2D
SPECT with 180-degree acquisition,” submitted to
Inverse Problems.



Optimization of Penalized Block-iterative Algorithms for Ga-67 Tumor Detection

H.C. Gifford!, C.L. Byrne?, M.V. Narayanan!, and M.A. King!
!Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
2Department of Mathematics, University of Massachusetts-Lowell, Lowell, MA, 01854, USA

Abstract— Our purpose is to optimize penalized block-
iterative algorithms for detection of Ga-67 tumors in the
thorax. We illustrate some of our methods involving psy-
chophysical studies with results from a preliminary channel-
ized Hotelling observer (CHO) optimization for a one-step-
late (OSL) version of the penalized RBI-EM algorithm that
features a 3D uniform quadratic penalty function. The al-
gorithm parameters to be optimized are iteration number
and a penalty weighting parameter 3. Use of the CHO is an
efficient means of bounding regions of parameter space that
contain the optimal parameters, although the final determi-
nation of the optimal parameters will be left to human psy-
chophysical studies. From the CHO optimization, we found
that one iteration of the penalized RBI-EM algorithm could
outperform a previously optimized reconstruction strategy
with RBI-EM and post-filtering that required three itera-
tions.

I. INTRODUCTION

By most definitions of image quality, unregularized re-
constructions of SPECT data are substandard. Procedures
for improving the quality of iterative reconstructions usu-
ally involve penalty functions, stopping rules, and post-
reconstruction filters. Whether a particular regularization
scheme actually improves an image will depend on one’s im-
age quality measure. In a series of earlier papers [1-3], we
documented optimizations of the ordered-sets expectation-
maximization (OSEM) [4] and rescaled block-iterative EM
(RBI-EM) [5] algorithms that were aimed at determining
if detection of Ga-67 tumors in the thorax could be im-
proved by modeling the physics of the data acquisition
in the inverse problem. These algorithms used a post-
reconstruction Gaussian filter as a regularizer. This cur-
rent abstract describes the early stages of similar optimiza-
tions of algorithms derived by incorporating 3D penalty-
function regularizers into the RBI-EM algorithm and the
block-iterative interior point algorithm (IPA) [6]. Such
penalized-likelihood methods are often viewed in the con-
text of maximum a posteriori (MAP) reconstruction [7].

One motivation for investigating these penalized algo-
rithms comes from the results of our work with the OSEM
and RBI-EM algorithms. Based on detection-performance
metrics drawn from localization ROC (LROC) [8] stud-
ies with human observers, it was determined [2] that the
OSEM algorithm with nonuniform attenuation correction
(AC) and three-dimensional (3D) detector-response correc-
tion (DRC) did improve detection in comparison to the
OSEM algorithm with only AC or with neither correction.
Even so, it was also seen that a significant difference in
performance existed between our DRC reconstructions and
“ideal” reconstructions that represented an upper bound
on DRC. The Gaussian post-filter may have contributed to
this difference by partially negating the effect of the DRC
in our reconstructions. If this were true, we might expect to

find that regularization with edge-preserving penalty func-
tions [7, 9] boosts observer performance over that obtained
with the post-filter regularization.

To show that one algorithm offers improvement over an-
other in a fair comparison first requires optimization of
each algorithm with respect to its adjustable parameters.
We perform these preliminary optimizations using a combi-
nation of channelized Hotelling observer (CHO) [10] ROC
and human-observer LROC studies. Use of the CHO of-
fers an efficient means of coarsely bounding regions of pa-
rameter space that contain the optimal parameters. The
actual determination of those optimal parameters is then
left to the LROC studies, but the workload for the human
observers is reduced by having applied the CHO. In this
abstract, we illustrate this approach with results from a
preliminary CHO optimization for a one-step-late (OSL)
version of the penalized RBI-EM algorithm that features
a 3D uniform quadratic penalty function. The adjustable
parameters to be optimized in this case are iteration num-
ber and a penalty weighting parameter 3. This penalty
function does not have edge-preserving characteristics, but
allows comparison to our past studies with the Gaussian
post-filter. Edge-preserving penalty functions are also to
be investigated for use with the penalized RBI-EM and
IPA algorithms. The inclusion of the penalized IPA al-
gorithm in this research provides a reconstruction method
that is not based on the OSL approximation.

II. METHODS
A. The Phantom

A distribution of Ga-67 citrate in the chest was simulated
with one geometry of the 3D mathematical cardiac-torso
(MCAT) phantom [11]. Background activity levels in the
phantom were set by reference to clinical values. Tumors
were modeled as 1-cm diameter spheres with a tumor-to-
soft-tissue activity ratio of 20:1. Each “abnormal” case
contained one tumor, randomly placed within a 3D map of
likely tumor areas.

B. The Projection Data

Separate analytic projections of the phantom and tumors
were created and then combined into a noise-free tumor-
present projection sets. The projector modeled nonuniform
attenuation in the phantom and the response for a medium-
energy parallel-hole collimator. For the results presented
herein, perfect scatter rejection was assumed so that com-
parisons with our previous optimizations of OSEM and
RBI-EM could be made, but simulations that include scat-
ter are also being done. Separate projections for 93- and
185-keV photons were obtained using energy-specific atten-



uation maps, and then added as a weighted sum based on
the relative abundances and camera efficiencies for these
energies. Projection sets consisted of 128 256 x 256 pro-
jections (pixel width of 0.1585 cm), rebinned to 128 x 128
pixels (pixel width of 0.317 cm). Poisson noise was added
to form data sets of 8 million counts.

C. The Reconstruction Algorithm

For this abstract, we consider a OSL penalized version
of the RBI-EM algorithm [5]. Like the OSEM algorithm,
the RBI-EM algorithm is a block-iterative version of the
maximum-likelihood expectation maximization (MLEM)
algorithm, but unlike the OSEM algorithm, it converges
in the case of consistent data for any choice of subsets.
Our human-observer LROC studies have also shown that
the RBI-EM algorithm is more robust than the OSEM al-
gorithm as the number of projection data subsets is in-
creased in order to accelerate the reconstruction [3]. To
define the penalized RBI-EM algorithm, we let £U) be the

jt iteration (j = 0,...,00) of f, with individual elements

Ay(lj ), and consider the detector pixels divided into R dis-
joint subsets Si,...,Sg. The convention followed here is
that every cycle through the R subsets represents an it-
eration. An RBI-EM algorithm regularized with penalty

function U(f()) requires solving the equation

f(j+1> —

F(7)
= X (1)
2U(EGD

(S Honn 4 0,7 (S, B~ 1))

for A,(Ljﬂ), where 7 = (j mod R) + 1, § is the nonnegative

penalty weight, and

a = max ( Z Hmn/ZHmn> . (2)

meS, m
For arbitrary U, a closed-form expression for A,(Lj ) is un-
obtainable from Eq. (1). One way around this difficulty is
to replace U(fU+D)) with U(f()), which is referred to as
the OSL approach [7].
Our uniform quadratic penalty function has the form

UE) = 2 S walfP 07 @)

keV i€ Ny

where V' is the full set of voxels in the 3D reconstruction,
Ny, represents the 3 x 3 x 3 cube of voxels centered about
the k'™ voxel, and w;y, is the distance between the centers
of the k' and i*" voxels in N}, normalized by the voxel
width. The optimization parameters for this choice of U
are the number of iterations and the magnitude of 8. Each
combination of iteration number and ( shall be referred
to as a reconstruction strategy. For a point of compari-
son, our past studies [3] found optimal observer detection
performance with 3 iterations (32 subsets of 4 projection
angles each) of the RBI-EM algorithm combined with a 3D
Gaussian post-filter with a FWHM of 0.95 cm.

Reconstructions with matrix dimensions of 128 x 128 x
128 were obtained with strategies using one iteration of
Eq. (1) and four projection angles per subset for values
of § between 0.0 and 1.5. Both the AC and the DRC
procedures that had been used in [2] were included in the
iteration. The attenuation map used for the AC was the
same one used in the creation of the projection sets, and in
that sense was an optimal attenuation correction [12]. No
post-reconstruction filter was applied. For LROC studies,
2D images through the center of the tumor are extracted
from the 3D reconstructions. These are then adaptively
thresholded, interpolated to 256 x 256 pixels, and then con-
verted from floating-point to byte images for display to the
human observers. For the CHO, the same 2D slices were
extracted, but the thresholding, interpolation, and conver-
sion to greyscales were not applied. Excluding these steps
reduced the computing time and also allowed use of a low-
noise approximation for constructing the CHO that is de-
scribed in Section II-D. For OSEM-reconstructed images,
we have found [13] that omitting these processes has little
impact on the correlation between the CHO and average
human observer.

D. Observer Studies

Our evaluation of reconstruction algorithms uses LROC
methodology to measure human-observer performance of
the Ga-67 tumor detection task. In a standard ROC study,
an observer’s response for an image is a confidence rating
that a tumor is either present or absent. For an LROC
study, the observer is asked to give this confidence rating
and the coordinates of the maximally suspicious tumor lo-
cation. By implementing this detection and localization
task, LROC offers both a better approximation of clini-
cal detection tasks and increased statistical accuracy over
ROC for measuring detection performance [8]. With this
improvement in accuracy comes increased statistical power
for discriminating between reconstruction strategies.

The CHO is a linear discriminant function that has been
shown [14-18] to correlate with humans for many “signal-
known-exactly” (SKE) detection tasks, in which the ob-
server knows the tumor location from the outset. We do not
yet have a modified version of the CHO that can perform
the search and detection task associated with these LROC
studies and still correlate with humans, but we have found
that the average CHO performance in series of SKE-ROC
studies with multiple tumor location agrees with average
human performance in the sense that both indicate similar
significant differences between reconstruction strategies [3,
13, 19].

For a given tumor location, the response of the CHO to
an image is a scalar A that is a weighted sum of the image
voxels. This sum can be viewed as the inner product be-
tween the image and a template image wcp,. Let f be a
3D reconstruction from noisy data that, with equal likeli-
hood, comes from an ensemble H, of tumor-absent recon-
structions or an ensemble H; of tumor-present reconstruc-
tions. Post-reconstruction processing such as extraction
of the transaxial slice of interest is performed by opera-



tor S, so that Sfis a 2D image intended for the observer.
Then A\ = thOSf' , where the t indicates a vector transpose.
Comparison of A to a threshold value determines whether
the CHO decides the image contains a tumor. The CHO’s
overall performance can be quantified by a signal-to-noise

ratio for A [20],

[(A[H1) — (\[Ho)]

SNR? = ;
tvar(A[Hy) + Svar(A[Ho)

(4)

where (AH;) and var(A|H;) (¢ = 0,1) are the mean and
the variance of the distribution of A for the i*" ensemble.
The CHO template is composed of a matrix U of impulse
responses for a set of C 2D prefilters (the “channels”) cen-
tered on the tumor location, a channel covariance matrix

Kchan, and a matched filter. For ensemble H;, let f; be the
mean 3D reconstruction and let K; be the voxel covariance
matrix. Assuming S applies only linear post-processing,
we make the definition

1
Kenan = 5 US[Ky + K,]STUT, (5)
and express the CHO template as [10]

Wao = UTKSL US(F; — fo). (6)

chan

Substituting Eq. (6) into Eq. (4) leads to the formula

chan[IS(f1 - fo) ’ (7)

SNRepo = [(?1 —fo)isTUTK:!

for evaluating the CHO’s performance.

The channel covariance and matched-filter portions of
the CHO require knowledge of the ensemble statistics of
Ho and H;, and determining these statistics accounts for
the computational expense of using the CHO. Oftentimes,
sets of noisy reconstructions are generated to produce sam-
ple statistics. In doing so, one makes use of the fact that
the number of channels C' (C=3 in our CHO model) is
much smaller than the number of image voxels by comput-
ing Kchan directly from the C' x C' “channelized” images
UST instead of estimating K; in full. For complex iterative
reconstruction algorithms, this approach is very computa-
tionally intensive [21]. An alternative is to make a low-noise
assumption about the images [22-24] and thus approximate
the ensemble statistics by a recursive procedure using noise-
free data. Let £*) € M, be the k*! iteration with g, and let

a®) be the k" iteration with the noise-free data g. Also,
(k)
' Ji
ag-k), the j* element of al®¥). When f*) ~ al®) + €(¥) for

define D) as the diagonal matrix with element D

small perturbations €(®), then E ~a®) [22], and
K; ~D® o® K, (0™ DK, (8)

The matrix O®) describes how noise in the data is trans-
ferred into the reconstruction through k iterations. We
determined the specific form of O®) for the penalized RBI-
EM algorithm by merging the results in [24] for MAP-
type reconstuction algorithms with [22], which treats block-
iterative methods such as the RBI-EM algorithm. As with

the sample statistics approach described above, the chan-
nel covariance should be calculated directly by computing
the product ATA, where

A =K:[0W]ID®styt, 9)

The SKE-ROC studies were conducted for 5 tumor lo-
cations. The overall CHO performance for a strategy was
figured by converting SNRgpo for each location into an area
under the ROC curve Az as described in [19] and then com-
puting the average area (Az) over location. The computa-
tion time required to evaluate SNRy, for a given strategy
at a single location is on the order of the time required to
perform 2(C + 1) reconstructions with that strategy.

ITI. RESULTS AND CONCLUSIONS

The results of the ROC studies are presented in Figure 1,
in which (Az) is plotted against 8 for the penalized RBI-
EM strategies that used a subset size of four angles per
subset. The high values of (Ay) seen for these ROC studies
are partly due to the fact that the tumor contrast and the
number of counts in the data sets were originally set for
use in the LROC studies.

The solid horizontal line at (Az) = 0.98 denotes the
CHO performance using three iterations of the RBI-EM
algorithm and a 3D Gaussian post-filter of FWHM = 0.95
cm. The best-performing ((Az) ~ 0.99) of the strategies we
tested used §=1.25, but several other strategies also out-
performed the RBI-EM strategy. The effect on CHO per-
formance of using more iterations and different numbers of
subsets is currently being investigated. Also, whether the
precipitous fall-off in performance above $3=1.25 will find
a correlation in human LROC studies remains to be seen.
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Analytical 3D Approach to Simultaneous Compensation for Photon
Attenuation and Collimator Response in Quantitative Fan-Beam

Collimated Brain SPECT

Tianfang Li, Jiansheng You, and Zhengrong Liang*

Abstract — Fan-beam collimation provides the optimal geometry
for data collection for brain SPECT imaging. For a non-parallel
projection geometry, there is no symmetry on the projection
rays, except the periodical property of the projection angle. This
property is well defined by circular harmonic decomposition
(CHD). This paper utilizes the CHD to explore the fan-beam
collimation geometry, including photon attenuation and
collimator response, for quantitative brain SPECT in three
dimensions. An analytical solution compensating simultaneously
for both of the photon attenuation and collimator responses is
presented. An efficient algorithm for the solution is formulated
and implemented by fast Fourier transforms. The reconstruction

has been validated by experiments on the Shepp-Logan and

Hoffman brain phantoms at various noise levels.

Index terms—circular harmonic decomposition,
spread function, fan-beam collimation.
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. INTRODUCTION

Single photon emission computed tomography (SPECT)
can provide quantitative information of the tissue functionality
in three-dimensions (3D). However, two major problems
that are causing difficulties in image reconstruction for
guantitative SPECT arise from the absorption of y-rays by the
body and the non-stationary point spread response of the
collimator (the scatter of the y-rays can be treated by other
means and will not be discussed here). For brain SPECT,
the attenuation problem can be simplified, because there are
negligible radioactive nuclides distributed inside the skull and
scalp and furthermore the attenuation of the skull and scalp
can be eguivalent to that of an enlarged brain tissue of a
constant attenuation coefficient, as a compensation for
uniform attenuation in a convex region”l. Collimator blurring
makes the image reconstruction more complicated, even for
the uniform attenuation and parallel-hole collimators?.
There does not exist a complete analytical algorithm by now
that compensates accurately both the attenuation and the point
spread response effects simultaneously, especially for the fan
beam collimator geometry in 3D. L. van Elmbt and S.
Walrand considered the problem for parallel geometry with
approximated algorithm®™, while E. J. Soares et a attacked
the problem of the same geometry for some particular

*T. Li iswith the Department of Physics and Astronomy, State University of
New York (SUNY), Stony Brook, NY 11790, USA.

J. You iswith MD OnLine, Inc, Lexington, MA 02421, USA.

Z. Liang is with the Departments of Radiology and Computer Science,
SUNY at Stony Brook.

resolution variation functions, such as the Cauchy model®.
Other researchers correct either for the non-stationary
resolution variation or for the constant attenuation, but not
both. And most of these work are either for 2D applications
or for parallel hole collimators®?.

Although many iterative reconstruction algorithms can do
the job and are flexible to be applied for many kinds of
complicated collimator geometry*>*? the computing burden
is always the drawback. If an analytical inversion formula
can be derived for the solution of the projection equation, it is
an interesting research topic for further investigation for
practical use. The derivation itself is aso an interesting
research topic.

Fan-beam collimation is an optimal geometry for brain
SPECT. It offers no symmetry for the projections, except
the periodical property of projection angle.  Circular
harmonic decomposition (CHD) has been widely used to
explore the property. In this paper, we present an analytical
inversion solution that simultaneously compensates for both
photon attenuation and collimator response of the fan-beam
collimated SPECT system. This method considers the
collimators blurring effect and intrinsic detector response
together as a system point spread function (PSF). It doesn't
limit the PSF in certain forms, but only based on the
assumption that the PSF is valid to each individual collimator
hole. Our method can be applied to parallel-hole, fan-beam,
or varying focal-length fan-beam collimator geometry. It
greatly reduced the burden of computational complexity. It
was validated under a more realistic case of a Gaussian
response function whose FWHM (full width at half
maximum) is a function of relative distances (lateral and
normal to the collimator surface) on both the Shepp-Logan
ellipse phantom and Hoffman brain phantom.

Il. THEORY

A typical fan-beam collimator geometry is shown by
Figure 1, restricted on a single slice. The object activity
distribution f(x,y,z) is of our interest.

With the inclusion of uniform attenuation of the brain
tissues and an 3D collimator response, the measured
projection data p,(Ss, z,8) is expressed as:

Pu(56.2) @
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where k(.) is the system point spread function. Let the |ateral
distance to each individual collimator hole being labeled as s,
see Figure 1, and a Cartesian coordinate system of I-t is
chosen such that thet axisis parallel to the focusing direction
of this hole, then the system response function k(.) can be
assumed as.
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Figure 1. Fan-beam geometry and the coordinate systems.

This assumption simply means that the system response
is a function of the distances from source activity point to the
collimator hole in 3D. This PSF assumption has been
investigated by many researchers and is consistent in those
references >4,

Following the method as described by Bellini et al % in
dealing with the constant attenuation, we define L(s, ) as the
distance from point (s,#) on detector to the boundary of the
object (st) with t>0, and let p.(s,z0) = exp[-uL(s,0)+uR]
p(s,z,6), then (1) become:

p,(s.6,2) (3
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By polar coordinate system, (2) can be rewritten as:
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where the relations held as follows:
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In general we may not have a closed inversion form for
formula (4). The purpose of this paper is to derive an

optimal estimation of f(x,y,2) or f(0,¢,2) based on the equation.
In the following, we will use the CHD technique to solve this
simultaneous compensation problem. The theoretical
procedure is given as follows.

By Fourier transform on (4) with respect to variable z,
we have:

5(s.6.6) = [dp [dpT(p.0.OK(() 00 -9.8) (©

where K denotes the Fourier transform of k for the variable
z,and p and f have the similar meanings. Note that the
image property f (p, ¢, &) can be estimated slice-by-dlice
for ¢, indicating that the compensation for the 3D collimator
response may be uncoupled to a 2D compensation. This is
because that the PSF is shift invariant along the rotation z-
axis. By computing the Fourier series expansion of ¢ on
both sides of (6) (this is usually called circular harmonic
decomposition of a function in mathematics), we have the
following formula:

p(s,n.&) = [do f (.0 EK((s) ping) D

where
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and notation * stands for conjugate operation. Obviously,
(7) is only a CHD expression of (6). Now the reconstruction
problem becomes a task of solving a linear algebraic equation
for eachnand ¢ :
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Givenp andM, and looking forf, this is a typical linear
problem that could be solved by several methods. Here we
are using the conjugate gradient algorithm. Since the
dimension is significantly reduced from 3D to 2D, efficient
calculation is expected.

I1l. IMPLEMENTATION

Fan-beam projections of the Shepp-Logan ellipse
phantom and Hoffman brain phantom with differéftc™
activity concentrations were simulated on a circular orbit of
64 evenly spaced views, taking into account the photon
attenuation and collimator response effects. Both the noise-
free projection data and their noisy versions with Poisson
noise were used to test the reconstruction algorithm.

The reconstruction procedure is as follows:



1. Perform the transforms on PSF matrix M. Thistask
is a pre-calculated step given the PSF, before image
reconstruction.

2. Perform Fourier transform on the projection data for
variable z, and Fourier series expansion for variable
0. Note that since the PSF is periodic about 6, so
zero padding is not necessary. But for variable z
(the shift invariant characteristics), zero padding may
be needed.

3. Utilize the conjugate gradient algorithm to solve the
linear equation (8).

4. After the f(p,n,&) is obtained, perform two
times of Fourier inversion transform, relating to z
and 0, to find the source image.

In our experiment, the response function was chosen as
the most general Gaussian function. Because of the CHD
method, transforms between Cartesian coordinate system and
polar coordinate system is needed.

IV. RESULTSAND DISCUSSION

The simulation results of different reconstruction procedures
are shown in Figure 2, which gives four arbitrary slices for
illustration and comparison purposes. Similar results were
obtained for the Shepp-Logan phantom. The first row
contains slices from the original Hoffman brain phantom.
The second row shows the reconstructed results from the
blurred projection data containing the photon attenuation and
collimator response effects. The third row represents the
reconstructed images from projection data with Poisson noise
at a noise level similar to a typical clinic study. For a
64x64x32 image, the reconstruction time was less than one
minute on a PC platform with Pentium 111 550 processor.

poon
poon
T

Figure 2. Hoffman brain phantom results. Top row
represents the origina Hoffman phantom slices.  Second

V. CONCLUSION

First, our method inherits the idea about angular
expression in our previous work®®?, which is beneficial for
non-parallel ray collimator geometry. It is not a back-
projection method of source and projections with
compensation for photon attenuation and resolution variation.
It constructs a new relationship between source image and
projection data using CHD technique. In this relationship,
the photon attenuation and collimator response can be
simultaneously considered in 3D. The compensation can be
implemented dlice-by-dlice along the rotation direction after
Fourier transform, because of the shift invariance along that
direction. Second, estimation of source image is efficient
and accurate via the conjugate gradient algorithm, which
converges in finite iterations, as demonstrated by Figure 2.
The simulation study revealed this optimization of the
proposed algorithm. The order of matrix M in (8) is only
NXN size, and the calculation for N slices can be performed in
parallel at the same time, so the computation is very efficient.

This method considers the periodical property of
projection rays of non-parallel-hole collimator geometry and
the shift invariant characteristics of fan-beam configuration
along the rotation direction. The periodic property is
explored by the CHD technique. The shift invariant
characteristics are efficiently utilized in the Fourier space.
This strategy reduces the 3D PSF treatment into 2D task in the
Fourier space and, therefore, improves the computing
efficiency. For the reduced matrix size, the conjugate
gradient method is a choice for the calculation. The
computer simulation is encouraging. Further validation by
physical phantom experimentsis under progress.
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Abstract

TomographicSPECT allows us to visualize, in 3D, the
distribution of radiopharmaceuticalin the body which are
reconstructedrom a seriesof two dimensionaimeasurements
performedaroundtheinvestigateabject. ThedSPECTmethod
extendsthesecapabilitiesinto thefourth dimensionandcreates
a seriesof dynamic3D imageswhich canbe obtainedfrom a
singlesetof dynamicdataacquiredusingonly asinglerotation
of the camera.In orderto testthe performanceof the method
for Teboroxime cardiac images, we have modified the 3D
MCAT digital phantomto modeldynamicchangesof activity
distributions in different organsof the thorax. Experiments
using different acquisition protocols were performed and
the resulting data were reconstructedising static (FBP and
OSEM) and dynamic (dEM) methods. The imagesobtained
by summingthe datafrom dynamicreconstructionsover all
time-frameswere as good as or betterthan thosefrom static
reconstructiongfor the scanswhich begun 60 or 120 seconds
postinjection i.e. after the bolus of actwity left the heart).
Including the bolusin the reconstructiongproduceddistorted
images.An importantadvantageof thedSPECTmethodis that
it reconstructémagesin aform of 3D moviesthatmaybeused
to extract additionaldiagnosticinformation, mainly temporal
information which is not available in static imagesand 3D
spatialinformationnot presenin planarstudies.

I. INTRODUCTION

Single PhotonEmissionComputedTomography(SPECT)
is well recognizedasa powerful diagnostictool to investigate
organfunctionratherthananatomysinceit allows usto image,
in three dimensions, the bio-distribution of radiolabelled
tracerswithin the body Standardclinical SPECT methods,
however, image only stationaryactiity distributions. It is
believed that nuclearmedicine procedureswhich could trace
changing distributions of radio-labelled substanceswould
provide importantinformationfor both diagnosisandresearch
(seefor example[1, 2]).

To this endwe have proposedch dynamicSPECT(dSPECT)
method][3] that allows us to obtain quantitatve information
about kinetic processesn the body from the data acquired
using a standardclinical acquisition protocol, one with a
single rotation of a tomographiccamera. The methodcan be
used with all standard,currently available SPECT systems
including single,doubleandtriple headcamerasTheresultof
the dSPECT reconstruction,which includes attenuationand
resolutionrecovery correctionsjs a4D dataset,composef a

time-seriesof 3-D SPECTimages(3D movie). The dSPECT
reconstructionis based on a mathematical optimization
procedure where all the dynamic projections are being
consideredsimultaneously resulting in images with better
signalto noiseratio thanin the "f ast-rotation”"method,where
each data set is reconstructedseparately An important
featureof the methodis that eachdynamicvoxel (doxel) is
reconstructedndependentlyand, asa result, it is possiblefor
anobjectto containanassortmenbf doxelswherethe actiity
may increase, decrease,increaseand decreaseor remain
constanbvertheacquisitiontime.

Over the last few years we have investigated the
performanceof the method using 2D computersimulations,
phantomexperimentsand patientstudies[3, 4, 5]. The goal
of thesetestshasbeento verify the methodfor a broadrange
of kinetic parametersto evaluateits accurag andto optimize
acquisitionprotocols. At the presentstage,however, we are
focusing our researchon a few practical applicationsof the
method. One of suchapplicationsis investigationof cardiac
studiesusingTeboroximeTc-99m.

It hasbeenshownn that Teboroximeextraction reflectsthe
true blood flow betterthan other myocardialperfusionagents
such as Tc-99m MIBI or TI-201 [6, 7]. Its use has been
limited becauseit is not trappedwithin the cell, but rather
dueto its neutralchage, is rapidly washedout. Thus, using
standardstaticimagingmethodswith this radiopharmaceutical
is difficult. Imageartifactscanbe producedandalso,aswill be
shawn laterin this paper the location,or eventhe presencef
ary defectcanoftennotbevisualizeddueto thedelayof blood
perfusionin thestenoticarea.

In orderto investigatetheseissueswve have adaptedhe 3D
mathematicalcardiac torso phantom (MCAT) [8] to model
temporalchangesin actiity distributions. Using a dynamic
version of the model (AMCAT) we have simulateddifferent
clinical situationsand acquisitionprotocols,thenassessethe
diagnosticcontent of imagesobtainedfrom this data using
static and dynamic reconstructions. Although in this work
we presentonly the results of Teboroximesimulations,the
dMCAT phantomis fully versatile and can be used with
other radiopharmaceuticalsising appropriatecompartmental
models.

Il. METHODS

In our dynamic version of the model (AMCAT) we first
simulatethe time-actvity concentration®f the radiotracerin
different organsof the humanthorax using a compartmental



model approach. A setof differential equationsrepresenting
the flow of actvity betweenorgansis solved with kinetic
parametersbeing defined by the userin a MATLAB user
interface. This part of the programhasto be modified for
each tracer so that the equations match the appropriate
compartmentalmodel. The result of this calculation is
displayedon a graphas a set of time actiity curves (TAC)
representingoncentrationsn differentcompartments.n our
simulationstheseactiity changeswvere modeledassuminga
bolus injection of the tracer The actiity then moves from
the right ventricleto the lungs, next to the left ventricle, and
to the myocardium,the muscles(representinghe rest of the
body)andto theliver. An additionalequationis usedto create
a defectin the heartwith dynamicparameterslifferentfrom
thoseof a healthymyocardium Kinetic parametersisedin the
modelwerebasedn experimentalleboroximestudiesandthe
shape®f theresultingsimulatedTAC’s wereadjustedo match
the experimentakhapeg9, 10]. Figurel shavs anexampleof
the curvesusedin our simulations. As canbe seenfrom this
figure, the injection bolus lasts for about30 secondsin the
right ventricle,then,for the next 30-60secondshe actwvity in
all organsrisesfastandthis periodis followedby muchslower
changeswith the normal myocardiumwashoutcharacteristic
time in therangeof 6-8minutes.
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Figure 1: An example of the time actvity curves (TAC) usedin
TeboroximedMCAT simulations.Thetop partof thefigureshaws the
injection bolus asit movesthroughthe right ventricle andthe lower
partthe activity concentrationsn the remaining. Note the changeof
scalebetweertheimages.

In the next stepthesevaluesof actvity concentratiorare
usedto computethe 4D thorax model (the “truth”) with the
activity in eachorganfollowing aseparatéime actiity change.
Figure 2 shows a volumerenderedmageof the dMCAT with
actiities correspondingo 2 minutespostinjection. We have
simulatedthe healthy myocardiumand the one with stenosis
(heartdefect) locatedat two different placesin the heart(in
the apex andcloseto the liver). Also, two differentlevels of

Figure 2: A volume renderedimage of the dMCAT phantomwith
actwities in the organscorrespondingo 120 second€2 minutes)post
injection.

liver uptale were modeledwith the MCAT option of a liver
positionedhighin thethorax.

The userthen specifiesthe acquisitionparametersising a
MATLAB userinterface. The numberof cameraheads their
startingangle,the matrix andpixel sizes,the angleof rotation,
thetime of eachcamerastopandthetime betweertheinjection
and the beginning of the acquisitionare specifiedto generate
the projectorwithout or with attenuationand without or with
2D or 3D collimator blurring. At this point the sinogramsare
calculated.

In our testswe have investigatedall theseoptionsmodeling
slow acquisitionswith dual and triple headsystems rotating
a maximum18(° per head. In all casesthe matrix size was
64 x 64 with 64 or 32 camerastopsand 10 or 20 secondger
projection,respectrely. Two differentapproachesveretested:
(i) a short3 minute scanwherethe actiity in the objectdoes
not changetoo muchand (ii) a longer10 minute scanduring
whichtheactiity dropsby about50%,this allows usto collect
dynamicdatawith betterstatisticsandwith more datapoints.
Similarly, we have testedacquisitionsstarting(a) at thetime of
injection (at 0 secondsvherefastmovementof bolusthrough
the heartis strongly influencingthe projectiondata, (b) at 60
secondsgostinjectionwith moremoderateatesof changeand
the with increaseand decreaseof actiity in the organs,and
(c) at120secondgostinjectionwhereactiity changesrethe
slowest.

Noiselessas well as noisy projectiondata(accordingto a
Poissonnoise) correspondingo about7-8 countsper second
permilliliter of myocardiuntissueasmeasurect120seconds
post injection (based on real patient data) were created.
Additionally, anexperimentsimulatingtriple-headfastrotation
was performedwith the camerarotating for 20 secondsover
12(° perhead.This studywasstartedat 60spostinjectionand
continuedfor 10 minutes(30 rotationsin total).

The last part of our MATLAB interface allows us to
reconstructthe data using (i) static reconstructionmethods:
filtered backprojection(FBP) or orderedsubsetsexpectation
maximization(OSEM) or (ii) usinga dynamicapproachwith
2D [11] or 3D [12] dynamicexpectationmaximization(dEM)
reconstructions. All images presentedin this work were
smoothedisinga 3x3 gaussiariilter.



[11. RESULTS AND DISCUSSION

First, in order to check the results for the presenceof
artifacts, the static reconstructionsvere comparedwith the
imagesobtainedby summingdynamicimagesover all time
frames. The static images obtained from the data from
both acquisitionswhich startedat the moment of injection
(0-3 minutes and 0-10 minutes) were dominatedby strong
streak artifacts which were due to large variations in the
object createdby the bolus actiity entering the right and
later the left ventricle. As expected,the FBP imageswere
much worse than those from the OSEM method. Dynamic
reconstructionswhich have the advantageof creatinga whole
time-seriesof images, displayed some artifacts in the first
imagescorrespondingo the beginning of the scan,but were
surprisinglygoodfor the remainingtime frames. Theseresults

indicatethat dSSPECTcan handleeven large actiity changes.

Summingof the time framesin this casedid not make much
sense, as artifacts from these first frames dominated and
spoiledtheresultingimagesasit is illustratedon Figure4.

Similar comparisonswere performedfor scansstarting at
60 and 120 secondgostinjection. In this case althoughFBP
static imageswere bad, the OSEM and summedover time
dEM reconstructiongproducedvery comparableimages(see
Figure 4). Also, therewas not much differencebetweenthe
acquisitionsvhich startedat 60 and120secondgostinjection.
Carefulanalysisof this data, however, revealsone disturbing
effect. Both staticand summeddynamicreconstructionsend
to averagethe actiity distributions over time. Therefore,in
situationswherethereis a defectin the heartit is possiblethat
both normal and stenoticmyocardiumwill have equallevels
of suchan averagedactivity and thereforetheseimageswill
not reveal the location, or even the presenceof the defect.
On the other hand, when reviewing the dynamictime series
reconstructedusing the dSPECT method one can clearly
identify the defectandanalyseits perfusion. Figure5 presents
two dynamictimes-frame$80 and260secondsorresponding
to the same data as presentedin Figure 4. Changesin
relative levels of actvity display clearly the location of the
defect. For comparisonthe top two imagespresentthe true
activity distributions, in the middle the results of dSPECT
reconstructionare displayed and the bottom part presents
imagesobtainedusingthe dataacquiredwith the fastrotation
of the triple head camerareconstructedvith OSEM. Since
theseimagescorrespondo only 20 secondgotal acquisition
time they have very poor statisticsand the high noise makes
their analysispracticallyimpossible.

On the other hand, when reviewing the dSPECT
reconstruction,in addition to spatial information about the
activity distribution, a dynamicseriesof imagesalso contains
temporalinformationwhich canbe usedin subsequerdnalysis
for diagnostic purposesor in order to separatedifferent
organs. Important applicationsof this approachwould be
the identification and quantitation of heart defectsand the
elimination of the problem of overlapping liver and heart
distributions. Thetime actiity curvesfor normalanddiseased
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Figure 3: Imagesof a transaxialslice of the dMCAT phantomfor
3 minutesacquisitionsstartingat the time of the injection. The true
actiity distribution (upper)and the resultsof static OSEM (middle
left), anddynamicdEM summedover all time frames(middle right)
arepresentedin thebottompartof thefigurethetrueandthedSPECT
imagescorrespondingdo the 2.5 minutetime framearedisplayed.
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myocardiumandfor theliver are quite different(seeFigure 1)
and, indeed,dynamicdatacould be usedin a suchseparation
procedure.

V. CONCLUSIONS

Performancef the dSPECTmethodhasbeeninvestigated
for myocardial viability studieswith Teboroximeusing the
MCAT phantom, which was modified to model changing
activity distributions in the organs. The imageswhich were
obtainedby summingtheimagesrom dynamicreconstructions
over all time-frameswere as good and often better or even
much better than those from static FBP or OSEM. An
importantadvantage however, of the dSPECTmethodis that
it reconstructsmagesin a form of 3-D dynamicmovies that
may be usedto extract additionaldiagnosticinformation. All
thesefindingsneedto be confirmedin patientstudieswhich are
currentlybeingperformed.
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true actiity distribution (upper left) and the results of static FBP
(upperright), static OSEM (lower left) and dynamicdEM summed
over all time frames(lower right) arepresented.
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Fast Computation of Statistical Uncertainty for Spatiotemporal
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I. INTRODUCTION for the parameters. Given this covariance matrix, the covari-

HE estimation of time-activity curves and kinetic mode?nce between the time-activity curve models for the blood input
: ye . . unction and tissue volumes of interest can be calculated and
parameters directly from projection data is potentially use- : R
ful for clinical dynamic single photon emission computed toqsed_ to esUmate Compa”mef‘ta' model kinetic parameters more
mography (SPECT) studies, particularly in those clinics thg{emsely, using nonlinear weighted least squares [10,11].
have only single-detector systems and thus are not able t0 peft, FAsT COMPUTATION OF STATISTICAL UNCERTAINTY
form_ rapld_ tor_nog_raphlc acquisitions. Because the radiopharma- FOR SPATIOTEMPORAL DISTRIBUTIONS
ceutical distribution changes while the SPECT gantry rotates, ) _ ) ) .
Following our development in [5], time-varying activity con-

projections at different angles come from different tracer dis- . ithi | £ ina th
tributions. A dynamic image sequence reconstructed from tﬁ%ntratlons within volumes of Interest encompassing the pro-

inconsistent projections acquired by a slowly rotating gant# cted SPECT f|eld of View can be madeled by _selectmg a set
can contain artifacts that lead to biases in kinetic paramet Fst_emporal basis f_unctlon_s capable of representlng typlc_al _tlme
estimated from time-activity curves generated by overlaying r ariations and having desired smoothness properties. Similarly,

gions of interest on the images. If cone beam collimators j spatially npnuniform activity concentration vv_ithin a particu-.
used and the focal point of the collimators always remains i qy volumfe of |r_1t(|erbest_ce;n be_mode(lse_d by selectlfng an app:rtc))prl_—
particular transaxial plane, additional artifacts can arise in ot £ sgt 0 Spgt'a as:s un.c'il(t))ns.. f|ven.a se]:c 0 ';]empcl)ra aS|fs
planes reconstructed using insufficient projection samples [1]74f'ctions anﬁ_ sets Of sp:;ha aT'_S unctions for t eI \éo u_mfes 0
the projection samples truncate the patient's body, this can red§€rest th)’e iclents ng_ e rtlas? ting Epaﬂotempora. asis ;nc'
in additional image artifacts. To overcome these sources of piins ca_nh ehestlmat_e irect Y r(;m the SPEFCT projection data,
in conventional image based dynamic data analysis, we and N9 With the covariance matrix for the coefficients.
ers have been investigating the estimation of time-activity CUNVES coyariance Matrix for the Spatiotemporal Basis Function
and kinetic model parameters directly from dynamic SPECT -

- : X sl Coefficients
projection data by modeling the spatial and temporal distribu- i o " ) i .
tion of the radiopharmaceutical throughout the projected field Denoting the projection of the™ spatial basis function along

of view [2-8]. ray ¢ at anglej by «;}, and the integral of the'™ temporal ba-

In our previous work we developed a computationally eﬁﬁ_is function during the time interval associated with angtd
cient method for fully four-dimensional (4-D) direct estimatiofiOtationk by vj;., the projection equations can be expressed as

of spatiotemporal distributions from dynamic SPECT projection M N
data [5], which extended Formiconi’s least squares algorithm for Dijk = Z Z A WIVTy, (1)
reconstructing temporally static distributions [9]. In addition, me1n=1

we studied the biases that result from modeling various ordey,

of temporal continuity and using various tw_ne sa_mpllngs [5 ar coefficients associated with the time integrals of the projec-
In the present work, we address computational isSues assqis of the spatiotemporal basis function,is the number of

ated with evaluating the statistical uncertainty ofspatiotempogHatial basis functions, anll is the number of temporal basis

model parameter estimates, and use Monte Carlo Simumionﬁfﬁctions. The criterion which is minimized by varying the lin-

validate a fast algorithm for computing the covariance matrg(ar coefficients,,,, is the weighted sum of squares function

fere thep; ;1 are the modeled projections, thg,,, are the lin-

This work was supported by the National Heart, Lung, and Blood Institute of I J K ( w0 )2
the US Department of Health and Human Services under grants R01-HL50663 2 _ Z Z Piji — Pijk )
and P01-HL25840 and by the Director, Office of Science, Office of Biological X Wik ’
and Environmental Research, Medical Sciences Division of the US Department i=1j=1k=1 J

of Energy under contract DE-AC03-76SF00098. This work was developed'g[@] thep* th d iecti thig
part using the resources at the US Department of Energy National Energy _gre ) epijk are_ € measure prOj.eC |_ons, ijk are
search Scientific Computing (NERSC) Center. weighting factors/ is the number of projection rays per angle,



J is the number of angles per rotation, aiidis the number of where .~ is the [m” + (n” — 1)M]" element ofa, and
rotations. Typically, the weighting factors are either unity for ahx” denotes scalar multiplication. Rearranging the summations
unweighted fit or the estimated variances of the projections fgelds

a weighted fit.
Equations (1) and (2) can be rewritten in matrix form as o A K
Qb — Z Z Q' X

p — Fa (3) m'’=1n'""=1
J I K
and > [S gy’ | [ it
) - j=1 Li=1 k=1 9
X’ = (p” — Fa) "'W(p* — Fa), ) Mo ; ®
_ s m,,n/m// nn’n”
respectively, where is an/JK element column vector whose B Zl Zl /' ;aﬂ b
m=1n"= =

[i + (5 — I+ (k — 1)IJ]™ element isp;jx, F is anIJK x v N
MN matI’IX Whose{[l + (j — 1)[ + (k — 1)IJ], [m + (n — o Z Z d L mnm’'n'm’” n’"
1) M1} element isufvT, ais anM N element column vector - Y ’

) m!=1n""=1

whose[m + (n— 1) M]™" element isi,,,,,, p* is anlJ K element
column vector whosgi + (j — 1) + (k — 1)I.J]" element is where the factors”*™ ™" and 37" denote the summations
P}, andWiis aniJK xIJK d|agone.1I matrix whosg + (j - 22’:1 umum'u;?'/ and Zile U;Lkvﬂvﬂ' respectively, and the
1)I + (k — 1)IJ])" diagonal element i$/W; ;. The criterion,

7 g
ro ! 1", 1 J ’ " ’ "
i ; : . factory™mnm nmmon denotes the su_, /"™ ™ g,
X2, is minimized by the vector of spatiotemporal basis functiofc or @3:1 &

J
Using the factorization given by equation (9), it can be

coefficients shown that most of the overhead associated with computing
a=(F"WF) 'FTwWp*. (5) the syrnmetric matrix elemer}ts,mff/m:/”' lies in calculating the
aj'™ ™ factors and the/™™™ ™ ™ ™" factors. These calcula-
The covariance matrix for the coefficieritss tions take abouf(1/N?) + 1]JQ multiply-and-add operations,

. T R . - . whereQ = (M N)?(MN +1)/2. By comparison, relatively
cov(a) = (F"WF)"'F Wcov(p")WF(F WF)™", (6) straightforward computation of the summations given by equa-

. . . ._tion (8) takes aboui.J K () multiply-and-add operations. Thus,
where coyp*) is the covariance matrix for the measured prOJe(fI ® JEK @ multiply perations. 1hus

i Gi imate of timat f the statistical or the computer simulations described in Section Ill, for which
lons. Iven an estimate o cov*), estimates of the statis ica I/N3 = 1/2, the factorization given by equation (9) reduces the
uncertainties of the coefficienfsare the square roots of the di-

) 0 - mputation by a factor of abo(®/3)I K ~ 20,000.
agonal elements of the covariance matrix given by equation 6% P y @/3)
and are denoted individually by, . In general, the errors in g, Covariance Between Integrated Time-Activity Curve Model
the coefficients are correlated and the covariance matrix given segments
by equation (6) has nonzero elements off the diagonal.

For an unweighted least squares reconstruction of the Spa@_ven an est|mat_e of C@)’ the covarlance _matnx for the
tiotemporal basis function coefficienss(i.e., for W an iden- spatiotemporal basis function coefficients, estimates of the co-

tity matrix), an estimate of the symmetrdd N x M N covari- variance between integrated segments of the time-activity curve

ance matrix cof&) can be obtained quickly from equation (G)models for the volumes of interest can be obtained as follows.
as follows. Assuming Poisson noise, the diagonal matrix hay-! "€ integral of the time-activity curve model for volume of
ing the modeled projections — Fa along the diagonal can pelnterestm, during the time interval associated with anglef

- . N .
used as an estimate of the covariance matrix for the measui@@tionk, can be expressed &s,,_; dmnvj,.. Thus, the co-
projections. Substituting this diagonal matrix for ¢pt) and Variance of this time integral with the time integral associated

the identity matrix forW, equation (6) can be rewritten as  With volume of interestn” during anglej” of rotation” is

cov(a) = (FTF)'FTdiag Fa)F(FTF)~!. 7 al al
(a)=(F'F) gFa)F(F F) (7 oV [ N amntlis >t
We have presented a method for quickly calculatifg F)~! n=1 n=1 (20)
in [5]. Using a similar development, the symmetheN x M N SR o y
matrix FTdiag(Fa)F can be calculated quickly as follows. De- = Z Vi GO, o) Vg
noting the{[m + (n — 1)M], [m’ + (n/ — 1)M]}" element of n=t=t
F'diagFa)F by ¢y"™ ™ one has and the variance of each time integral is
J K N
S D DI oy
=1 j=1 k=1 (8) n=1 (11)

M N N

/ N
~ ml/ n// m/ n/ n ~ ~ n/
§ : E : Am/'n'Uij Vg X U5 Vjks = § E Uik COV(a,,m, amn/) Ujk-

m!’=1n'"=1 n=1n'=1



As a figure of merit related to the global precision of the time-
activity curve model for volume of interest, the following ex-
pression yields a squared noise-to-signal ratio calculated as the
mean (over all of the time segments) of the expected values of
the squared errors between the integrated segments of the “true”
and modeled curves, normalized by the mean square value of
the integrated segments of the “true” curve:

2 = =1 L - (12)

J K N .
Zj:l Zk:l Zn:l amn”?k

Substituting equation (11) into equation (12), the squared noi§
to-signal ratio¢2, can be calculated quickly by rearranging the
summations, precomputing the inner products of the temporal 180
basis functionsy™’ = 7_, 3, vy, and exploiting the ol
symmetry with respect to the indicesandn’:

N N R ~
2 _ 2an=12n'=1 COM @ s G V™™ s
fm - N N ~ N " . ( )
anl anzl Amyn Amn'V

I1l. COMPUTERSIMULATIONS 60
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ig. 1. Transverse cross section through the MCAT emission phantom, showing
“the truncation of data resulting from the use of cone beam collimators.
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To validate the fast algorithm presented in Section I, 1600 re-
alizations of cone beam projection data having Poisson noise
were generated using the simulation apparatus described in [5].

Simulated spatiotemporal distributions were obtained using time (min)
the Mathematical Cardiac Torso (MCAT) phantom developed at Fig. 2. Simulated time-activity curves for the volumes shown in Fig. 1.
the University of North Carolina [12]. The emission phantom
(Fig. 1) was composed of 128 contiguous 1.75 mm-thick slices
and contained the blood pool, three myocardial tissue volumes 10
of interest (normal myocardium, septal defect, and lateral de-
fect), liver, and background tissue. Projections were attenuated
using the corresponding MCAT attenuation phantom.

The simulated time-activity curves (Fig. 2) mimicked the ki-
netics of teboroxime [13]. The simulated 15 min data acquisi-
tion consisted off = 2048 cone beam projection rays per an-
gle (64 transversex 32 axial), J = 120 angles per revolution,
andK = 15 revolutions, and thus yielded about 3.7 million pro-
jection samples. The projection bins were 7 nxm/ mm at
the detector, and the detector was 30 cm from the center of the
field of view. The cone beam collimators had a hole diameter of . . , . . . . .

1g. 3. Piecewise quadratic B-spline temporal basis functions. Sixteen splines
2 mm, a length of 4 cm, and were offset 1 cm from the detector. are ysed to span 15 time segments having geometrically increasing length.
The focal length was 70 cm, which resulted in truncation of the The initial time segment length is 10 sec. The thirteenth spline is shown as
data (Fig. 1). Attenuation and geometric point response were@solid curve.
modeled using a ray-driven projector with line length weight-
ing [14]. Scatter was not modeled. The amplitude of the simderivative and yielded errors of less than 2% for noiseless pro-
lated blood input function was adjusted so that about 10 milligéctions, where the error was defined to be the root mean square
events were detected using the cone beam collimators. (rms) difference between the simulated curve and the spline

The spatial basis projection factor3! were defined by for- model, normalized by the rms value of the simulated curve [5].
ward projecting each of the six known emission volumes com-The computational benefit of using the factorization given
posing the MCAT phantom (Fig. 1). Each emission volume wédry equation (9) to estimate the covariance matrix for the spa-
modeled to contain spatially uniform activity, which yieldediotemporal basis function coefficients was evident in the sim-
M = 6 sets of spatial basis projection factors. ulations. The number of multiply-and-add operations used to

The temporal basis integral factary, were defined by inte- calculateF Tdiag(Fa)F was reduced from about 1.6 trillion to
grating N = 16 splines spanning 15 time segments having gabout 80 million. Using a 194-MHz R10000-based SGI work-
ometrically increasing length (Fig. 3). Piecewise quadratic Btation, it took 34 sec to estimate the 96 coefficients for the
splines were used with an initial time segment length of 10 sepatiotemporal basis functions, their covariance matrix, and the
The resulting curve models were continuous through their fisjuared noise-to-signal ratios given by equation (13).

20
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TABLE |

ACTUAL AND ESTIMATED STATISTICAL UNCERTAINTIES FOR SPATIOTEMPORAL BASIS FUNCTION COEFFICIENT$OR 1600REALIZATIONS OF NOISY
PROJECTIONS THE SAMPLE STANDARD DEVIATIONS OF THE COEFFICIENT$THE SECOND COLUMN IN EACH OF THE FOUR SUBTABLES) AGREE CLOSELY
WITH THE SAMPLE MEANS OF THE ESTIMATED STATISTICAL UNCERTAINTIES(THE THIRD COLUMN IN EACH OF THE FOUR SUBTABLES).

blood pool normal myocardium septal defect lateral defect
n a1n [ d2n Tayy, a3n Gayy, dan Tiyy
sample samplg sample| sample samplg sample| sample samplg sample| sample samplg sample
mean sdev | mean mean sdev | mean mean sdev | mean mean sdev | mean
1 0.279 0.128 0.131| 0.0102 0.166 0.166| -0.0529 1.28 129 | -0.212  0.747 0.762
2 5.20 0.138 0.140| 1.05 0.171 0.174| 0.559 1.33 1.35 | 0.979 1.47 1.46
3 7.65 0.157 0.160| 2.30 0.185 0.187 1.36 1.89 1.88 1.38 3.00 2.99
4 8.20 0.172 0.175| 3.75 0.331 0.333 1.89 3.04 3.05 2.42 1.95 1.95
5 7.19 0.153 0.160| 5.15 0.222 0.219| 2.33 191 1.94 3.25 1.26 1.27
6 5.40 0.105 0.107| 6.30 0.148 0.145 2.70 1.20 1.24 3.58 1.75 1.73
7 3.51 0.0974 0.0953 7.07 0.141 0.140 2.87 1.50 1.54 3.59 0.876 0.864
8 2.00 0.0658 0.0668 7.36 0.108 0.109 2.67 0.886 0.904| 3.11 1.08 1.09
9 1.04 0.0545 0.0543 7.21 0.0839 0.0836 2.45 0.600 0.602| 2.44 0.593 0.602
10 | 0.535 0.0464 0.0446 6.71 0.0743 0.0735 2.02 0.560 0.562| 1.69 0.418 0.411
11 | 0.308 0.0361 0.0362 5.98 0.0632 0.0628 1.57 0.486 0.477| 1.03 0.364 0.354
12 | 0.208 0.0305 0.0298§ 5.13 0.0538 0.0530 1.13 0.397 0.399| 0.592 0.296 0.300
13 | 0.149 0.0250 0.0245 4.20 0.0454 0.0441 0.761 0.327 0.325| 0.307 0.258 0.253
14 | 0.103 0.0197 0.020] 3.28 0.0360 0.0365 0.478 0.268 0.270| 0.179 0.206 0.207
15 | 0.0657 0.0167 0.0168 2.39 0.0303 0.0308 0.268 0.232 0.234| 0.0853  0.165 0.170
16 | 0.0399 0.0169 0.0169 1.64 0.0314 0.0313 0.135 0.270 0.269| 0.0651  0.161 0.164
TABLE Il REFERENCES
ACTUAL AND ESTIMATED NOISE-TO-SIGNAL RATIOS FOR TIME-ACTIVITY [1] H K Tuy, “An inversion formula for cone-beam reconstructioi§1AM J
CURVES, FOR 1600REALIZATIONS OF NOISY PROJECTIONS Appl Math vol. 43, no. 3, pp. 546-552, 1983. o
[2] R H Huesman, B W Reutter, G L Zeng, and G T Gullberg, “Kinetic
- - parameter estimation from SPECT cone-beam projection measurements,”
nozet{éo(;i)l?nal (EJ/:) Phys Med Biglvol. 43, no. 4, pp. 973-982, 1998.
[3] G T Gullberg, R HHuesman, S G Ross, E V R Di Bella, G L Zeng, BW
sample  sample sample  sample Reutter, P E Christian, a@nS A Foresti, “Dynamic cardiac single-photon
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ABSTRACT: A newly developed 3D image reconstruction technique for Compton camera data is described in this paper.
For Compton cameras, the energies and positions of gamma-ray interactions in at least two detectors from a single incident
photon are recorded using coincidence techniques. Based on this information, the Compton scattering formula establishes a
cone surface from which the incident photon must have originated. Through an extension of the previously developed
rebinning technique, instead of tracing the entire cone surface into the image space, a number of lines on the cone surface
are sampled. All the lines start from the apex of the cone and are evenly distributed over the cone surface. The number of
lines on each cone is determined by the desired spatial resolution. Each line is then projected to a perpendicular imaginary
detector plane. The 2D Fourier transform of the line-projection data on this plane is shown to be one rotated plane of the
3D Fourier transform of the source distribution in the frequency domain. By projecting all of the sampled lines, performing
Fourier transforms on all of the projected data, and summing up all the transformed data in the frequency domain, the 3D
Fourier transform of the source distribution can be obtained. Interpolation and geometry normalization of data points in the
3D frequency domain will subsequently be applied. An image can then be reconstructed by a 3D inverse Fourier transform.
The development of this technique will be discussed in detail.

I. INTRODUCTION

For a Compton scatter camera as illustrated in Figure 1 in which it is assumed that one emitted gamma ray Compton
scatters in the primary detector then undergoes a photoelectric absorption in a secondary detector (this interaction sequence
is defined as a preferred event), a cone surface can be established to determine the possible locations from where the
incident photon was emitted [1-3]. The location and orientation of the cone surfaces are random in space and depend on
where the two interactions occur in these two detectors, as well as the energies deposited. Thus image reconstruction is a
difficult task. One potential 3D image reconstruction technique is the conventional Fourier deconvolution, which is based
on projecting cone surfaces into the image space to establish a data matrix and then deconvolution of the projected data
matrix with the point spread function that was previously determined for the image system [4]. In this study, a rebinning
technique is being developed for the 3D image reconstruction of Compton camera data.

II. METHODOLOGY

Prior to describing the rebinning method for image reconstruction for Compton cameras, some aspects of rebinning need
to be discussed. As illustrated in Figure 2, f(x,y,z) is a function in 3D space and P is an arbitrary plane that crosses the
origin O. A rotated coordinate system (O,X',Y',Z") is established such that the X'-Y' plane is plane P. The relationship
between the rotated coordinates and the global coordinates is simply a rotation operator Rp. Function f(x,y,z) in the rotated

coordinates will be:
F(xL 2= R f(xy,2)] ()

Position Sensitive
Secondary Detector

Source E,

X2a Y27 ZZa E2

X]’ Yla Zla El

Position Sensitive
Primary Detector

Figure 1. Principle of Compton scatter camera. E; and E, correspond to the energy
deposited in the primary and secondary detectors, respectively.



Figure 2. Projection of a 3D function f(x',y’,z") (in rotated coordinates) onto a plane P.

When f(x,y,z) is perpendicularly projected onto P, it is projected along the Z' axis in the rotated coordinates. We denote
this projection as Ap(x',y’) in the rotated coordinate system:

! ! ! ! ! !
Ap (X y) = [,y 2)dz’. @
By taking the Fourier transform of Ap(x',y’) on x" and y’, we get

AP (l/t’, V’)= F2 [)’A()C/, y/)]=fdx/j‘lp(x/, y/)e[—2j;z(u'x'+v’y')]dyy
=fdxfdyff(x7, yr’ Z/)e[—ijz(u’x'+v’y')]dzr’ 3)

where the F, operator is the Fourier transform operator of dimension n and u' and V' are the frequency components
corresponding to x' and y’, respectively.
The 3D Fourier transform of f(x', y', z') in the rotated coordinate system gives

F’(u/’v/a W’)= F3[f(x/a y’a Z’)]= fdx’j‘dy/j.f(x” y/’ Z/)e[—2jﬂ(u’X'+V'y'+W'z')]dZ/‘
Comparison of equations (3) and (4) yields

Ap V)= F'' v W), ©)

The physical meaning for equation (5) can be stated as: the 2D Fourier transform of line-projection of a 3D function onto
a plane is a directly rotated plane (u’,v’,0) through the 3D transform of the original function in the frequency domain. The
rotated plane in frequency domain has the same orientation as the plane to which the function is projected. This can be seen
as an extension of the central slice theorem of the Radon transform from 2D to 3D, although it is different from the 3D
Radon transform [5-7].

The quickest route to calculate f(x,y,z) with the knowledge of Ap(x',y’) is through equation (5). If a complete set of
projections are available, i.e. Ap(x',y’) are known in every plane that crosses the origin, the Fourier transform of all
projections will give the complete Fourier transform of the original 3D function. So f(x,y,z) can be obtained as

£ y,2)= F [P Gvw)]= fdufdv [ S R[A, (v B, )

e} oo o]
where R'p is the rotation operator transforming Ap from the rotated coordinates into the original coordinates in the
frequency domain. £ sums up all of the projections to establish the complete 3D Fourier transform of the original function.



II1. REBINNING COMPTON CAMERA DATA

For the Compton camera, instead of tracing the entire cone surface into the source space to reconstruct an image, we
propose to sample lines on the cone surface. All lines originate from the vertex of the cone surface and are evenly
distributed over the cone surface. Consequently, we have two options for sampling Ax(x',y’): 1) predefined planes and 2)
arbitrary planes.

a) Predefined Planes

A series of planes each of which covers an equivalent solid angle and covers half of the sphere (i.e., a total solid angle of
2n is thus subtended) are predefined. Each line is projected onto one and only one plane to which this line is closest to
being perpendicular. All of the planes that have projections from this sampled cone will mark the projected spot with a
weighting factor such that when summing up all the points projected by the lines from one cone, the total weight is 1. In
this manner, each cone represents only one valid event and shall contribute equally to the image.

After all of the cones have been rebinned, the 2D Fourier transform is performed on each of the predefined planes to get
its frequency components. Each Fourier transform undergoes a rotation operation, according to the orientation of the plane,
into the same universal coordinates. Summation of all of the rotated data, interpolation of data points where data are
missing, as well as geometry normalization operations will then be employed. By performing 3D inverse Fourier transform
on the summation of all the data, the original 3D function can be constructed.

b) Arbitrary Planes

An alternative means of calculating A,(x',y") can be approached as follows. Each line on the cone surface can be treated
as the norm to a plane, and therefore can define a plane that passes through the origin of coordinates. Since this line serves
as the norm to the projection plane, the projection will be exact, no approximation is introduced as it was in a).
Theoretically there will be the same total number of planes as the total number of lines, and each plane will only have one
projection point. Since the Fourier transform and rotation are both linear operations, one can perform either the summation
or Fourier transform in equation (4).

The second approach is still under development. The computational load seems to be very large for this method, since
there will be one 2D Fourier transform for each sampled line. However, while all the plane sizes are the same, even though
there might be only one point on this plane, there are only limited combinations of how this point is distributed over this
plane. Therefore a table can be constructed a priori for the Fourier transform of every possible projection. By looking up
the corresponding Fourier transform in the table, this time-consuming step may be executed relatively quickly.

III. PRELIMINARY RESULTS

For the rebinning strategy a) in the previous section, if the planes used here are a series of planes rotating along one
single axis, and each plane only covers a small portion of solid angle, the image reconstruction is similar to standard
SPECT. In this case, the filtered backprojection algorithm can be directly applied to the projection data to reconstruct the
image. Figure 3 is an illustration of this case. 5 point sources are simulated using MCNP with 1.6 million preferred events.

Figure 3. Reconstructed image with 5 point sources with equal activity. Only
18 out of 128 slices are shown here. 360 planes are used for projection, and
they all rotate along the same axis with each one covering 0.5-degree angle in
each direction.



With 360 planes rotating along the Z-axis and each covering an equal solid angle, 0.5 degrees azimuthally and 0.5 degrees
in z direction, the filtered backprojection algorithm is adopted. No noise has been added to the simulation. Each slice
covers a 22 cm x 22 cm area and is divided into 128 x 128 pixels. Distance between slices is the same as the space between
pixels within one slice. Though only a very small portion of solid has been taken into account (~0.4%) for 1.6 million cones
(i.e., only a small amount of data is used), the constructed image shows clearly the 5 point sources. Notice there are some
artifacts around the edge of the image space. This kind of artifact is probably due to the fact that the lines are much denser
at the vertex area, and it is possible to filter out this artifact by introducing certain types of filters during the reconstruction.

IV. SUMMARY

A rebinning technique for Compton camera image reconstruction is proposed and under development. Preliminary
results show that this is a promising technique for fully 3D image reconstruction of Compton camera data. The full
manuscript will provide a detailed discussion of this technique. The discussion will cover the derivation of the transform,
analysis of the inverse transform, properties of this kind of transform in space domain as well as in frequency domain, and
discussion on reconstructed images.
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Abstract—The in beam dual head positron camera
BASTEI (Beta" Activity meaSurements at the Therapy
with Energetic Ions) is used to monitor and control the
applied dose distributions simultaneously to tumour
irradiations with carbon ion beams at the experimental
heavy ion therapy facility at GSI Darmstadt. Therefore,
the PET system has been mounted directly at the treat-
ment site. A fully 3D reconstruction algorithm based on
the Maximum Likelihood Estimator algorithm has been
developed and adapted to a strongly spatial varying im-
aging situation. The scatter and attenuation correction is
applied to the measured list mode data before each itera-
tive step. This requires an attenuation map containing
the information on the tissue composition and densities.
This information is derived from the X-ray computed
tomograms (CT) of the patient and the patient fixation
system including the head rest. The scatter correction
method uses the subtraction of calculated scattered from
measured data. The normalization of scattered events
relative to the unscattered events is done by a global
scatter fraction factor. The results are presented.

1. INTRODUCTION

Since 1997 85 patients mainly suffering from head and neck
tumours have been treated at the experimental heavy ion tu-
mour therapy facility at GSI Darmstadt. The carbon ion ther-
apy is favourable for treating compact, radioresistant tumours
in close vicinity of organs at risk. Therefore, a dedicated
in-beam PET system has been built. During the irradiation -
radioactive nuclei are produced by nuclear fragmentation
reactions along the path of the beam. This activity can be
related to the original dose distribution and imaged in-situ by
means of positron emission tomography. The dedicated
positron camera BASTEI has been integrated into the treat-
ment facility, it has a dual-head geometry in order to avoid
interference with the horizontally fixed beam and restrictions
to the patient positioning [1]. The two large-area detector
heads, which have been assembled from components of the
ECAT EXACT® PET-scanner, are mounted above and below
the patient couch. The measured list mode data are recon-
structed by a fully 3D noise suppressing Maximum Likeli-
hood algorithm.

Furthermore, the expected counting statistics is limited by
the doses applied per therapy fraction and is usually two to
three orders of magnitude lower compared with those of
typical PET-scans in nuclear medicine. Nevertheless, the
rather simple shape of the activity distributions alleviates the
reconstruction problem.

The individual detector response of the 4 Mio. lines of re-
sponse (LOR) are corrected by means of a normalisation

scan. It is performed with a line source moving through the
field of view (FOV) of the camera.

The process of photon scattering considerably influences the
image quality in PET. For head and neck tumours about 20 %
of the registered true coincidences are influenced by
Compton or Rayleigh scattering, which may destroy the cor-
respondence between the source and the reconstructed radio-
activity distribution especially in highly inhomogeneous
regions of the human body.

2. IMPLEMENTATION

Since the P'-activity distribution is well localized to the
irradiated volume, the scatter correction algorithm requires
the information on the tissue composition and density only
within and nearby the camera FOV. This is derived from the
X-ray CT of the patient (created for treatment planning pur-
pose) which is automatically combined with a CT of the head
rest (Fig. 1) using characteristic landmarks. The created data
set is the basis for the calculation of the attenuation correc-
tion factors. The correct position of these CTs with respect
to the positron camera is derived from stereotactic coordi-
nates used during the diagnostic CT scan and for patient posi-
tioning before the irradiation. The Fig. 1 shows the signifi-
cant influence of the absorption by the head rest on the de-
tector response leading, if not corrected, to image artefacts
in the reconstruction. The dashed line denotes the acceptance
cone of the tomograph

Figure 1: The density distribution used for attenuation and scatter cor-
rection obtained from the patient CT and from the CT of the patient
support. A typical tumour location and the acceptance cone of the
positron camera are displayed.

The reconstruction is based on the Maximum Likelihood
Estimation algorithm [2] and has been extended to a three
dimensional image space [3]:
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x" denotes the activity distribution after the n-th iteration
step, y,-*(“) is the modified measured projection for the i-th
LOR and a;; is the element of the transition matrix.

The aim was to model the above described non-standard im-
aging situation as accurate as possible within an acceptable
computation time. The reconstruction is performed by using
an image space with a size adapted to the irradiated volume
(typical image size of 0.5 million voxels with a size of
1.6875 mm). During the treatment with a typical physical
dose of 0.8 Gy per fraction around 100,000 coincidences are
acquired.

The non-zero elements of the transition matrix required for a
particular reconstruction are calculated at run time. In order
to consider the individual crystal response, the volume of
each LOR is sampled by 10 lines whose endpoints are ran-
domly distributed over the crystal volume taking into account
the interaction probability depending exponentially on the
depth of interaction and the spatial orientation of the crystals.
The following pre-iterative correction for each coincidence
channel i are applied:

=0 =y Wp
1
where y/ and y;” denotes the number of the measured prompt
and random coincidences, respectively. The correction factor
w# depends on the length of the emission line within the
image space divided by the total length of the longitudinal
image space axis whereas w;’ is the detection efficiency.
The scatter correction is applied to the measured projections
before each iteration step. Thus, the events registered for
LOR i ("““) can be considered as the sum of the unscat-
tered events from this LOR (/") and of events scattered
into this LOR from outside (y;"“"):
meas

unscatt scatt

i i i 3)

The correction step of equation (1) has to be performed for
the unscattered and attenuation corrected events, i.e.:

()
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a; a;
where a; is the total attenuation along LOR i.
To calculate the quantity ;" we follow the approximation
of Ollinger [4] and Watson [5] denoted as the Single Scatter
Simulation (SSS). This algorithm approximates the scatter
coincidences in a given LOR by single Compton scattered
events only. At first, a sample of around 1000 scatter points S
is randomly distributed throughout the scatter volume where
the density exceeds 0.1 g/cm’ (Hounsfield > -900).
Figure 2 shows a LOR labelled AB. For each scatter point S
there will be two distinct contributions to the single scattered
coincidences, depending on which side of the scatter point
the annihilation takes place (Q, Q>).
The first addend in equation (6) supposes that the annihilation
takes place at a point Q; between S and A. The photon which

reaches the crystal A is unscattered. The scatter contribution

4

for AB is calculated according to the following formula in a
discrete notation:

yi/ = 2 Zx;") ‘e
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In this expression w is the linear attenuation coefficient (de-
rived from the merged CT), £ and E’ denote the photon en-
ergy before and after the Compton scatter, respectively, de-

dE(8(5))
dQ

pending on the scatter angle 6, is the probability

of Compton scatter by the angle 6 from S into B and Qg5 is
the solid angle of the detector relative to S.
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Figure 2: Trajectories of scattered photons

Detector 2

The total number of scattered events calculated
N =S,
f

has to be normalized to the number of acquired coincidences.
Because of the limited angle geometry and the low counting
statistics it is impossible to apply the normalization proce-
dure according to Watson [5] which based on a scatter rate
estimation from measured data. As an alternative we calculate
by means of an additional Monte Carlo simulation the global
scatter fraction SF from the n-th solution:

(6)

SF = Nscan _ M (7)
Ntrue + Nscatt Nmeas
where
Nocan = 2V Nypeas = D07
From this followsi l
st _ . SF N ®)
N

In*troducing eq. (8) into eq. (4) yields the projection value
yi ™ for each iteration step.



3. RESULTS

The algorithm has been validated using point-like ?Na in a
water filled cylindrical phantom (diameter 15 cm, height
15 cm).

Several geometrical configurations were simulated by means
of Monte Carlo and reconstructed with the new scatter cor-
rection algorithm.

The reconstruction algorithm has been applied successfully
to patient data. In dependence on the number of measured
coincidences that contribute to the image space, the recon-
struction time varies between 120 and 240 minutes on a
R8000 processor (75 MHz) of an SGI Power Challenge. The
faster converging algorithm OSEM is taken into account, but
not implemented up to now.
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Abstract— We describe a method for normalization in 3D
PET for use with model-based image reconstruction meth-
ods. This approach is an extension of previous factored nor-
malization methods in which we include separate factors for
detector sensitivity, geometric response, block effects and
deadtime. Since our MAP reconstruction approach already
models some of the geometric factors in the forward pro-
jection, the normalization factors must be modified to ac-
count only for effects not already included in the model.
We describe a maximum likelihood based approach to joint
estimation of the normalization factors which we apply to
data from a planar source. We then compute block-wise
and block-profile deadtime correction factors using singles
and coincidence data, respectively, from a multiframe cylin-
drical source. We have applied this method for reconstruc-
tion of data from the LSO Concorde P4 microPET scanner.
Preliminary results compare favorably with those obtained
using normalization based directly on cylindrical phantom
measurements.

Keywords— 3D PET, Normalization, Image Reconstruc-
tion

I. INTRODUCTION

Accurate normalization is essential for accurate quanti-
tative 3D PET. Inaccuracies in normalization factors can
result in artifacts, poor uniformity, and increased noise in
the reconstructed images. Traditional solutions to the nor-
malization problem include direct and component-based
methods. In direct methods, a known source of activity
is scanned, then the normalization factors are estimated
as the ratio between the ideal number of coincidences and
those actually measured [1]. The main problem with this
method is that it requires that a very large number of
counts be detected to achieve acceptable statistical accu-
racy for each line or response (LOR). To maximize the
number of counts over all LORs, direct approaches typi-
cally use a uniform cylindrical source. Unfortunately, this
introduces its own problems since the observation model is
complicated by a substantial scatter fraction.

Hoffman [2] proposed a component-based method which
divides the normalization factors into detector efficiency
and spatial distortion correction, which accounts for the
radial mispositioning due to the geometry of the scanner.
This model reduces the number of counts required by re-
ducing the degrees of freedom in the normalization model
so that the normalization factors are computed by averag-
ing over multiple LORs. Casey [3] and Badawi [4] extended

This work was supported by the National Cancer Institute under
Grant No. R01 CA59794 and the National Foundation for Functional
Brain Imaging.

this concept to develop sophisticated models accounting
for a wide variety of factors affecting detection efficiency.
Casey’s normalization model includes intrinsic detector ef-
ficiency, geometric factors, crystal interference and dead-
time factors, Badawi added time-alignment factors and a
count-dependent block-profile to this model.

These models are complex and involve the sequential es-
timation of multiple types of normalization factors, often
from different data sets. This can lead to inconsistent es-
timates since the normalization models are multiplicative.
While optimal estimation of individual components, e.g.
the detector efficiencies [1], [5], have previously been inves-
tigated, joint estimation of all factors in the component-
based models has not, to the best of our knowledge, pre-
viously been described. Here we present a unified model
in which all factors are estimated simultaneously within
a maximum likelihood framework. This model is specifi-
cally matched to the model-based Maximum A-Posteriori
(MAP) reconstruction methods [6]. The combination of
our previously described system model with matched nor-
malization allows us to explicitly account for the imperfec-
tions in the line-integral model using an accurate physical
and statistical model for coincidence detection. In this way
we build on our previous model, which included effects of
detector solid angle, photon pair non-colinearity and in-
tercrystal scatter and penetration, to also include effects
arising from the block design, individual detector efficien-
cies, geometric effects, and deadtime.

II. METHODS

A. Normalization within a statistical image reconstruction
framework

We have developed a MAP estimation algorithm to re-
construct 3D PET images [6]. In this approach, the data
are modeled as:

y=Px+T+5§ (1)
where y is the mean of the data, x is the source distribu-
tion, T is the mean of the randoms, and s is the mean of
the scattered events. P is the system matrix describing the
probability that an event is detected, which we factor as:

P= PnormelurPattnPgeom (2)

where Pgeom is the geometric projection matrix describing
the probability that a photon pair reaches the front faces
of a detector pair in the absence of attenuation and assum-
ing perfect photon pair colinearity. Ppjar models photon



pair non-colinearity, intercrystal scatter and crystal pene-
tration, P,gsn contains attenuation correction factors for
each detector pair, and Pyorm is a diagonal matrix con-
taining the normalization factors.

The effects of solid angle variation at the detectors rel-
ative to the position of each voxel along a line of response
and the angle between the detector surface and the LOR
are accounted for in Pgeom. Similarly, the effects of crystal
penetration that result in mispositioning of events towards
the edge of the field of view is included in Ppjyy- Con-
sequently, these need not be included in the normalization
factors as they are in previous factored methods [3]. Never-
theless, there are geometric factors that are not accounted
for in (2) that we include in our normalization model as
described below.

The normalization model we use here is that the diagonal
matrix Phorm has elements

Prorm(i,1) = eqricaig(l, j, k) 'mpri poidaridgni - (3)

where we have used i to index the LORs. The specific
detectors forming this LOR are denoted d1’ and d2°, and
b1’ and b2 are the blocks containing these detectors. The
components of this model are as follows:

Geometric factors g(l,j, k)% (I,j,k)" represent, respec-
tively the radial position [, the view angle j, and the sino-
gram index k, associated with LOR i. The sensitivity of
each LOR is a function of the position of the two detec-
tors in the block and the distance of the LOR from the
center of the field of view of the scanner. Our geomet-
ric factor essentially combines the geometric and block-
interference patterns of [3] into a single factor. Since the
scanner is highly symmetric both axially and transaxially,
many LORs are equivalent in these respects. The average
number of LORs sharing the same block and radial posi-
tions is approximately 2.3 x 168 (the number of blocks in
the Concorde scanner - 336 detectors for each of 32 rings in
blocks of 8 by 8). Fig. 1 illustrates the symmetries of the
LORs with respect to the blocks that we use in comput-
ing the normalization: each LOR can have up to an 8-fold
symmetry with respect to a single block. This pattern then
repeats every 8 detectors for an 8 by 8 block design.
Detector efficiency e4;i,240:: these quantities describe
the intrinsic efficiencies of the two detectors forming the
LOR. The total number of these factors is equal to the
number of detectors.

Time-alignment factor 7;: j5:: The time alignment fac-
tor is based on the model proposed by Badawi [4] to ac-
count for differences in timing synchronization between dif-
ferent blocks. As the timing windows become misaligned
between any pair of blocks, so the detection efficiency will
drop. We can characterize the timing properties of each
block by a single delay factor. The time-alignment factor
for each LOR is then a function of the difference between
the delay factors for the two blocks for that LOR. The
form of this function can be determined experimentally by
varying the timing between a pair of blocks. We have not
yet performed this experiment so that in the results pre-

Fig. 1. The geometric factors are functions of the radial position of
the LOR and the positions of the two detectors within their respective
blocks. Illustrated here for a 4 by 4 block detector system is a four-
fold symmetry in these factors. An additional two fold symmetry
results from rotating and axially translating the LORs so that each
of the four blocks on the right of the figure moves to the location of
the left most block.

sented below we instead estimate directly a separate time-
alignment factor for each pair of blocks.

Deadtime factor d;;:dg:: the deadtime factors are esti-
mated separately as described in Section II-C.

B. Normalization factor estimation

We compute the normalization factors from the previous
section using a joint optimization procedure. This differs
from the common practice of using rotating rod sources
to compute geometric factors and cylinder data to com-
pute geometric efficiencies [3], [4]. This provides self con-
sistent estimates of the unknown parameters. Moreover,
by basing the estimation on the model (1), the normaliza-
tion is matched to the specific forward projection model
that we subsequently apply during reconstruction. For the
plane source used in our studies, scatter is minimal and we
currently ignore scatter contributions. For the Concorde
microPET scanner, data is initially collected in listmode
format so that we can re-sort into simultaneous prompt
and delayed event sinograms. Prior to computing the nor-
malization factors, we use a Bayesian technique to estimate
the mean of randoms from the separate randoms sinogram
[7].

We model the measurements as Poisson using the model
(1) to give the log likelihood:

L(Pnorm) =

N
Z yilog{eg1icazig(l, j, k) To1s po: [PX]s + T3}

i=1

—{(earicazig(l, 4, k) m1i p2i ) [Px]i + T3} (4)

The source distribution x is the known plane source.
We estimate the parameters by maximizing L(Pnorm) us-
ing a grouped coordinate ascent method, updating each
of the different factors in turn using steepest ascent with
a Newton-Raphson line search. We find in practice that
effective convergence is reached in 5 iterations with 3 sub-
iterations of line search at each main iteration.



C. Deadtime estimation

We assume for the purposes of computing the count-
independent normalization factors, that the plane source
is of sufficiently low activity that deadtime effects are min-
imal. This assumption is reasonable for the LSO detectors
in the Concorde scanner for which deadtime factors are
considerably lower than they would be for a BGO system.

Deadtime is affected by the properties of the PMT and
detection electronics [4]. Rather than adopt the exponen-
tial model that was developed by Casey [3], we instead use
an empirical quadratic correction method [4] which relates
observed and true singles rates at each block by

Aq
1+ a), + 82 (5)

where ); is the true singles rate, A\, is the detected count
rate, and o and (3 are experimentally determined param-
eters. We allow a separate deadtime calibration of this
type for each detector block in the system, based on the
measured singles rate for that detector block.

Block detectors also exhibit an additional deadtime ef-
fect, characterized by gradual mispositioning of events to-
wards the middle of the block as the count rate increases [8],
[4]. This mispositioning contributes to a count dependent
variation of sensitivity across the detector blocks, which
we report on below. Our results indicate that these varia-
tions are significant so that we include these factors in our
deadtime correction.

Thus our overall deadtime model for each detector d;,
similar to that in [4], is the product of the misposition-
ing deadtime dy,,(d;) and PMT and electronics deadtime

dpp(bi):

At

da; = dmp(b;i) X dpp(d;) (6)
where b; is the block containing detector d;. The deadtime
correction factor for each LOR is then the product of the
factors for the two detectors forming the LOR.

We estimate the factors dp,,(b;) by observing the singles
rate at each detector block over a series of I frames, taken
as an F-18 source decays over the expected range of ac-
tivities for the scanner. Since the LSO detectors have a
natural background activity, we model the true activity at
the block as

At) = Ae™t +C (7)
where A is the initial singles rate, ¢ is the decay constant,
and C is the background activity. Integrating this activity
over the duration of each frame from time ¢; to ¢;+7 and
applying the deadtime model (5) we obtain the series of
equations:

A
—oT

Aa,,i
L+ adg,i + BA2;

(e 01+ T) — e=t)) 4 O = (8)
fori =1,...1 where )\, ; is the observed total singles rate
at the ith block and a and 8 are the constants to be es-
timated. This set of equations are solved using nonlinear
least squares to obtain a separate pair of parameters for
each detector block. The mispositioning deadtime param-
eters were computed as described in [5].

III. EXPERIMENTAL STUDIES
A. Plane source experiments

Using the method described above, we estimated nor-
malization factors for the Concorde MicroSystems P4 mi-
croPET scanner. We acquired data for a 90x200x2mm
plane source of volume 38cc filled with 700 uCi of FDG.
The first frame was collected for 20 minutes, the source
was then rotated by 30 degree increments, with frame du-
rations adjusted to achieve approximately equal counts in
each frame. We windowed each sinogram to take only lines
of response within £15° of the normal to the plane. The
set of six windowed sinograms were then used to estimate
the normalization factors.

B. Deadtime experiments

A 221.6cc cylinder, diameter 5cm and length 15.5 cm,
containing 4.80 mCi F-18 solution was scanned for 19
frames. The duration of each frame was 600s with each
new frame starting 0.5 half-lives after the previous one.
The average singles rate for the first frame for each block
was 1.43 x 10°, the average singles rate for the last frame
was 827 (which was largely due to background radiation
from LSO). The listmode format from the scanner allows
us to acquire separate prompt and delayed sinograms and
the singles rates for each individual detector block. These
data were used to compute the deadtime factors.

C. Cylinder uniformity

Using the new normalization factors, we reconstructed
a 5 cm diameter uniform cylinder. For comparison, we
used a normalization file generated directly from a 2 hour
duration frame from a uniform cylinder.

IV. RESULTS

Shown in Fig 2 are the block-wise and block-profile com-
ponents of the deadtime correction factors. Fig 2(a) shows
the excellent count-rate linearity for the LSO block detec-
tors in the scanner over a wide activity range. The block-
profile results indicate that these factors introduce signifi-
cant count-dependent variations in sensitivity as a function
of position in the block which should be included as part
of the normalization process.

In Figs. 3 and 4 we show the effects of applying the
model-based normalization procedure described here to re-
construction of a uniform cylinder compared to direct nor-
malization based on a uniform cylinder. In both cases, the
images were reconstructed using 30 MAP iterations with all
algorithm parameters otherwise equal. Fig. 3 shows a sin-
gle transaxial plane, and a profile through this plane, from
the reconstructed cylinder. These results indicate some im-
provement in transaxial uniformity and a small reduction
in noise. The latter observation was verified by computing
region of interest variances which found a reduction in the
percent standard deviation to mean ratio from 20% to 18%.
The rise in activity towards the edge of the field of view
that can be seen in both profiles is caused by the presence
of scatter in the sinograms which was not corrected for in
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Fig. 2. Deadtime correction factors: (a) results from fitting the
quadratic deadtime model to singles data from a 4.8mCi cylinder;
shown are the measured vs. true singles rates for 8 different block
detectors; (b) transaxial block profile factors computed from coinci-
dence data for a measured singles rate of 20K for 8 different detector
rings; (c) axial block profile from same data as (b).

these studies. Fig. 4 shows the axial uniformity as the total
activity in each of the 63 reconstructed slices. Apart from
over-correction in the first few planes, the model-based nor-
malization produces improved axial uniformity compared
to the direct normalization method.

The preliminary results presented show encouraging, if
small, improvements in image uniformity compared to a
direct normalization procedure. Further improvements
should be realized as we refine our model. In order to com-
pute the normalization factors in our approach, we must
know the position of the plane source relative to the sino-
gram space. Currently we do this by comparing the mea-
sured plane source sinograms with the forward projection
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Fig. 3. Central plane of reconstructed cylinder. Left: model-based

normalization; right: direct normalization.
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Fig. 4. Axial profiles of reconstructed cylinder using model-based
and direct normalization.

of a simulated plane source, whose angle is adjusted so
that the two sinograms match. Our procedure for perform-
ing this matching needs further refinement. We will also
modify the time-alignment factor parameterization as we
describe in Section II-A. Finally, we will include compen-
sation for scatter to perform a full quantitative evaluation.
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Iterative Reconstruction Methods for High-
Throughput PET Scanners
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Abstract. lterative reconstructions for clinical PET Methods
must run fast. We describe a clinical processing
method based on sinogram rebinning, Fourier rebin-
ning for the 3D to 2D data reduction, and iterative
reconstruction using the attenuation-weighted
OSEM method with a projector based on a gaussian
pixel model. When this approach is used, multi-bed
clinical oncology scans can be ready for diagnosis
within minutes.

Images of one position of the patient bed are derived from
the 3D emission sinogram, a set of normalization coeffi-
cients, and attenuation correction factors (ACF). The sino-
grams represent an estimate of true coincidences, since
random events are subtracted from the sinograms during
acquisition. The ACF’s may be taken directly from a trans-
mission measurement, or they may result from a segmenta-
tion procedure.

Introduction

To prepare the sinograms for reconstruction, we first multi-

i . . . ply them by normalization coefficients. [3] Next, each plane
As PET becomes used increasingly in the clinic, the need fof, o 5ch oblique segment of the high-resolution sinogram is

high throughput in whole-body oncology is being metin sev-repinned radially and angularly. Clinical users often use 128
eral ways. First, PET scanners with septa to block rad'at'o'%inogram bins and 128 angular ones. After rebinning, the

on oblique lines of response (two-dimensional, or 2D, scangjnagram contains all quanta in the normalized sinogram, but
ners) are being replaced by scanners with removable Sepie arc distortion has been removed and the sinogram bins
(3D capable scanners), and more recently by scanners with,esent equally spaced, parallel lines of response. The
no septa (fully 3D scanners) to make use of the increasefbpinning algorithm is indicated in Figure 1, where:
sensitivity in 3D mode. Second, detectors with a highetg \rce coordinates are those of the normalized sinogram
intrinsic count rate capability are being developed to allowith arc distortion: “destination” coordinates are those of the
more patients to be scanned in one day, for example, sCaRapinned sinogram: and left and right edges are determined
ners with LSO scintillators instead of BGO. Third, algo- , the coordinate transformation which changes the sino-
rithms are being developed to improve image quality. Th&yram pin size and describes the arc distortion. The algorithm
most promising of these algorithms are iterative reconstruCiyeqrates the interpolation function (which is a step function
tion methods. in the case shown) over the needed range of source coordi-

The iterative approach to image reconstruction is computa':]ate positions, thereby preserving the counts.
tionally intensive. One could hope that the arrival of fastertyq transformation from 3D to 2D sinogram is performed

computers every few months will allow the use of increasiyh the Fourier rebinning method. [4] Before Fourier rebin-

ingly more sophisticated algorithms, yet it has been observeqing is performed, we make the sinograms more consistent

[1] that, over the last two decades, the number of lines of,y gn51ving the segment-0 attenuation correction to all sino-

response in PET scanners has grown at a rate that outpacgs,m segments. After Fourier rebinning, we form an esti-
Moore’s Law which describes the density with which found- o6 of a 2D sinogram of scattered radiation, using Watson's

ries are able to pack transistors onto a microchip. Processingathod. [5] To create the inputs required by this method, the
algorithms must also be coded to run very fast. 2D emission sinogram is reconstructed and smoothed to cre-

. . . .. agte a low-resolution image which is known to be corrupted
In this paper, we describe an approach to generating clinic ) : .

: X . y scatter; and the logarithm of the ACF is reconstructed to
images with the new generation of 3D PET scanners. The

approach is the same one described in [2] but applied to 3Do_bta|n an image of attenuation coefficients. Both of these

) T . reconstruction steps use a filtered backprojection technique
Sinogram rebinning is an important feature of our approach

in which we reduce the size of the input data sets early in thgvhICh 's implemented in frequency space. Next, the attenua-

reconstruction procedure.
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Clinical Performance and Patient
Images

This approach is designed to run fast. In a typical clinical
acquistion, images are available about 3 min after all patient
data is acquired in fully interleaved mode when the recon-
struction is paralleled to the acquisition. In the case dis-
cussed in this article, the images were available when the
patient left the scanning room. An analysis of the time

be assigne involved indicates that about 45 seconds are used to read
\ data over the network from the acquisition computer; 50 sec-

e onds to set up the 3D normalization matrix; about 20 sec-

left edge onds for the scatter correction; and approximately 20

o
right edge o : :
9 9 seconds for every iteration on a typical computer configura-

Xdestination tion (Sun Ultra-60 running at 450 MHz).

The comparison of the UW-OSEM and AW-OSEM algo-
rithms is shown in Figure 2. Clinicians normally prefer the

and the scatter estimate is subtracted from it.

FIGURE 1. Rebinning method

Image quality is demonstrated in Figure 3. The sinograms

The reconstruction itself, that is, the inversion of the RadorfOr this scan were acquired in 3D on the ECAT Accel, a new
transform, is performed with the attenuation-weightedgeneration of LSO based PET scanners, in 45 min (9 bed
OSEM method (AW-OSEM). [6] For the forward projector POSsitions, 3 min in emission scan time and 2 min transmis-
and the matched backprojector, we use a gaussian vox&|On scan time each).

model. [7] Negative sinogram values are set to zero before
the iterative reconstruction begins. Our initial image esti-
mate has the value 1.0 in all voxels. Clinical users often
select the option to use eight subsets and to stop after tw . . .

iterations. After reconstruction, the images are filtered tran:\%/e have re_allzgd an acpeptable and, we think, h'gh Iev_ell of
saxially and axially image quality with iterative reconstructions that run in clini-

cally realistic times. The keys to doing the calculation fast

The convergence properties of this algorithm were presente@nough are: sinogram rebinning and Fourier rebinning as
in [2]. In this paper we present new clinical results from atéchniques for reducing the number of sinogram bins; and
fully 3D LSO scanner. Although it is not the thrust of this US€ of the attenuation-weighted OSEM algorithm. The result
work, we compare AW-OSEM images to those from anotheriS @ procedure that allows routine 3D reconstruction of clini-
older OSEM reconstruction method, [8] in which attenuationc@l images of as many patient scans as can be acquired dur-
factors are applied to sinograms before reconstruction. WiJ the day.

call the old method UW- OSEM, where UW denotes
unweighted.

Conclusions and Future Work

This model does not treat the background of random events
accurately. Among the techniques to be explored in the
future is NEC scaling. [9]
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FIGURE 2. The left side shows two coronal slices through a typical data set reconstructed with the
previous version of the iterative reconstruction using pre-corrected sinograms and 1 iteration, 30
subsets, and a 10 mm gaussian filter. On the right side, the same data set is reconstructed with the
new algorithm and 2 iterations and 8 subsets. The parameters were chosen to generate images
preferred by the clinicians for each algorithm
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FIGURE 3. Image of a 25 year old, 71 kg, male melanoma patient 45 min post injection of 16 mCi FDG, 9 bed
positions acquired for 3 min emission and 2 min transmission each.

The gaussian voxel model should be well suited to fully iter-
ative 3D reconstruction. Schmand showed that the line
spread function of high-resolution LSO and GSO brain scan-
ners is well modeled as a gaussian. [10] See Figure 4. Wé.
are looking for ways to extend our algorithm to that recon-
struction problem.
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Abstract

We are testing a modified bootstrap technique for
importance sampled data from SimSET (a simulation system
for emission tomography). The bootstrap allows us to
simultaneously produce multiple raw data sets from a single
simulation while at the same time reducing the weight
variation caused by importance sampling. This combination
may greatly reduce the CPU time required to produce the
multiple image realizations needed for ROC studies. Initial
testing indicates that the mean and variance of medium and
high count bins in the raw data and high-activity regions of
interest (ROIs) are reproduced relatively accurately.

I. INTRODUCTION

We are developing a modified bootstrap technique to apply
to emission tomography simulations using SImSET [1].

Despite the use of importance sampling (IS) [2] and the
ever-increasing speed of computers, many problems remain
unwieldy or intractable to study using simulation. One such
problem is the generation of multiple realizations of the same
image for ROC studies. These studies often require hundreds
of image realizations from each of several different activity
distributions. Such data sets can take months or even years of
CPU time to generate.

The problem of generating multiple samples from a
probability distribution when only one data set is available, or
when multiple data sets are difficult to produce, is often
attacked using the bootstrap technique [3, 4]. In this
technique, the available data set is used as an estimate of the
underlying distribution. New data sets are generated by
sampling data points from the original data with replacement.

We have attempted to modify the bootstrap to ameliorate a
problem inherent to the use of importance sampled data:
because the events have different weights, the variance has
different properties than that of the equivalent analog (non-
importance sampled) distribution. The idea underlying our
modified bootstrap is that by sampling events with frequency
proportional to their weight, we can reduce or eliminate the
variation in weight. One can imagine several ways of realizing
this goal: the one we chose is described below in Section II.d.

<“——20 cm—p Activity
Figure 1: The simulated phantom.

We have tested this technique by generating 99 positron
emission tomography (PET) data sets and comparing them to

1 Supported by PHS grant CA42593

99 data sets from an analog simulation, both in data space and
image space. The results raise as many questions as they
answer, but give substantial cause for optimism.

II. METHODS

A. Simulation Setup

We performed 99 analog simulations of 4 million decays
each. We simulated an elliptical cylinder of water, 40 cm
major axis, 10 cm minor axis, and 3 cm axially. A 6 cm
diameter circular cylinder of activity was centered on the major
axis, 10 cm from the center of the phantom (Figure 1). No
collimators or detectors were simulated; instead, all photons
reaching a target cylinder with energy greater than 400 keV
were considered detected. The target cylinder was centered at
the same point as the elliptical cylinder, with 90 cm diameter
and 3 cm axial extent.

Coincident events were binned into a 64 by 64 distance-
angle array, with the distance bins spanning -20 cm to 20 cm.

B. Bootstrap Implementation/Importance Sampled
Simulation

We created 99 data sets using a modified bootstrap
technique and the data from one simulation. We used the same
simulation setup as described above, except with SImSET’s
stratification, forced detection, and forced non-absorption
features turned on.

Often when bootstrap sampling is applied, it is used to
create multiple realizations with N detected event from a
single simulation or scan with N detected events [5]. We
thought that the resulting overlap in the detected events from
data set to data set might cause significant correlation between
artifacts in the images reconstructed from the resulting data
sets. For this reason, we chose to simulate 664,230
decays—using a short training run, we determined this would
produce an equivalent number of detected events to ten 4-
million decay analog runs.

Our bootstrap technique sampled from this simulation on-
the-fly. Each time a detected event was produced, we sampled
a random number, R, for each of the 99 data sets from the
Poisson distribution with parameter

p= min(o.lﬂem ,0.5)
Wmean

(1

where Wevene 1S the weight of the current event, Wiean is the
average event weight, and the factor 0.1 is to compensate for
the fact that we were simulating ten times as many decays as
needed for one data set. The maximum value of 0.5 is set to
keep the Poisson parameter small, so that a event does not
appear in too many of the data sets. When the sampled R is 0,



the event is not binned in that data set. Otherwise the event is
binned with its weight adjusted to

R*w event
p

In a more typical bootstrap, Woupe Would not include the
factor R; instead, R events would be generated. We chose to
create a single event to simplify the modifications needed to
the SimSET software. In the long run, however, we believe it
may be better to generate R separate events.

2

Woutput =

C. Image Reconstruction

We reconstructed images from the analog and bootstrap
simulation data sets using filtered backprojection with a
Hamming window, cutoff frequency 0.6.

D. Statistical Analysis in Data Space

The 99 data sets from the analog simulations were
compared to the 99 data sets from the bootstrap simulation
using the Student t-test and the f-test [6]. We applied these
tests bin-by-bin, and grouped the results according to the
mean number of counts in the analog simulation data sets.

B. Data Space Analysis

The results of the Student t-test and the f-test applied bin-
by-bin are shown in Tables 2 and 3. The last four columns
show the percentage of analog-bootstrap bin pairs with p >
0.5, 0.05, 0.01 and < 0.01—the last three being of interest as
common levels for the rejection of the null hypothesis. No
results are shown for 1223 bins for which one data sets
(analog and/or bootstrap) had no counts in any realization.
(The analog data sets had 659 such bins, bootstrap 1191.) The
rest of the results are sorted by the mean number of counts in
the analog data bin. The line for average counts between 0 and
1 should, perhaps, have been omitted, as many of these bins
had a total, over all the realization, of 10 or less events. We
usually wouldn’t apply these tests to Poisson data with less
than 20-30 counts.

However, even in the high count bins, we are seeing
significantly different means and variances for a high number
of bins. The distributions are close, as shown in the fact that
there are also many p-values greater than 0.5 and 0.05.
However, overall the distribution of data is clearly different for
the analog and bootstrap realizations.

Table 2
Bin-by-Bin T-test Comparison
E. Region-of-Interest Analysis in Image Space mean counts| #of | %p>] %p> 0 %p> | %ps

Two square ROIs, 5 by 5 pixels (3.1 cm by 3.1 cm) were bins 0.5 0.05 0.01 0.01
placed on each image. The first ROI was centered in the 0 1223 - - - -
cylinder of activity, the other in a zero-activity area on the
other side of the phantom. We computed the sample mean and Otol 2209 16.3 48.2 60.8 39.3
variance for the analog images and the bootstrapped images. 1to5 97 35.1 69.1 81.4 18.6
We then computed Student t-test and f-test statistics.

5to 10 67 37.3 71.6 80.6 19.4

III. RESULTS 10t030 | 185 222 589 773 227

30 to 50 183 20.8 54.6 70.0 30.1

A. Simulation Run Statistics 0 o0 132 15.2 492 599 402

Some simulation efficiency statistics are given in Table 1. Toble 3
The bootstrap/IS method significantly reduced the cost per . _ave .

L . . Bin-by-Bin F-test Comparison
realization—though we must note that the situation we - - - -
simulated is one where the IS can help a great deal, something [™e2n counts f of I /‘(’)p; I gg 5> é)g 1> I (/;)(I)) 15
that is not always true. 1S : : ‘ :

Table 1 0 1223 - - - -

Simulation Efficiency Statistics 0to 1 2209 8.1 253 342 65.8
average analog average bootstrap

simulation realization 1to5 97 23.7 70.1 82.5 17.5
CPU time (seconds) 1320 7.8 5to 10 67 26.9 85.1 95.5 4.5
Total detected counts 19,905 22,385 10 to 30 185 37.8 79.5 90.3 9.7
Total detected weight 938,647 916,355 30 to 50 183 26.2 78.7 90.2 9.9
Total detected weight- 44.26 million 39.62 million 50 to 70 132 30.3 81.1 95.5 4.6
squared
Quality factor (QF) 1.0 0.95
counts *QF 15.1 2752 C. Image Space Analysis
CPU_time Table 4 shows the sample mean and variance for the two

image ROIs. For both ROIs, the means are very close. The
sample variance make clear, however, that this was a matter of
luck. The variances for the ROI with activity have an f-test p-



value of 0.29, so they are also reasonably close. However, the
background variances are significantly different (p = 0.0004).

Table 4
ROI Mean and Variance

Analog IAnalog I Bootstrap IBootstrap

mean variance [ mean variance
Active ROI 707.2 150.2 707.8 121.3
Background ROIj 2.18 73.39 0.19 35.6

IV. DISCUSSION

This is preliminary work, and as such raises far more
questions than it answers. The modified bootstrap technique
helps to speed up the generation of multiple realizations
tremendously, but we have not shown that these realizations
are close enough to truly independent realizations to allow the
technique to be used.

However, there are a number of ways we can address the
problems. A better way to assign the number of decays for the
bootstrap simulation would help—our use of a short training
run for that purpose will have propagated the noise from the
short run through our entire data set. There are other ways to
implement the bootstrap algorithm that might help. And,
given the tremendous speed-up we achieved, we could
experiment with generating more events.

We do not really expect the bootstrap to perfectly
reproduce the bin-by-bin statistics shown above. As seen
above the performance on image statistics can be very good
even in situations where the underlying data sets do not
perfectly represent the true distributions. We plan more tests
for this technique in image space. The ultimate test will be the
performance of the bootstrap on ROC data sets.

Finally, we note that SImSET is available free of charge
for non-commercial use. However, the bootstrap algorithm is
not in the distributed package, and will not be until we have
carried this investigation considerably further. Contact
simset@u.washington.edu for more information.
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A sufficient condition for spiral cone beam
long object imaging via backprojection

K. C. Tam

Siemens Corporate Research, Inc., Princeton, NJ, USA

Abstract

The response of a point object in cone beam
spiral scan isanalysed. Based on theresult a
sufficient condition for the spiral scan long object
problem employing backprojection is formulated.
By making use of the sufficient condition a
genera class of exact, backprojection based
reconstruction algorithms for spiral scan cone
beam CT is developed which are capable of
reconstructing a sectional ROI of the long object
without contamination from overlaying materials
using spiral scan cone beam datairradiating the
particular ROI and itsimmediate vicinity only.
Also, at each source position the minimum size
of the region on the detector plane required for
3D backprojection is reduced, which in term
brings about reduction in the amount of 3D
backprojection computation.

[. 2D filtering and masking

Spiral scan computed tomography with large
area detectorsis of increasing interest for rapidly
scanning spacious volumes. Asthe cone angle
increases the artifacts generated in the
reconstructed images by the approximate
reconstruction algorithms will become more and
more serious, and exact reconstruction algorithms
arerequired. Itisknown that if the spiral pathis
long enough so that every plane intersecting the
object also intersects the spiral path, the object
can be reconstructed. For long objects, however,
it is highly desirable to scan only the portion of
the object that is of interest, for the sake of
reduction in scan time aswell as radiation
protection of the patient in medical imaging.
However, as a consequence of the divergent
nature of the X-ray cone-beams different regions
of the object are correlated. To reconstruct only
aregion-of-interest (ROI) from a spira scan

which covers the particular ROI and its
immediate vicinity only poses a challenge for the
Imaging community. Thisisreferred to asthe
long object problem in the literature.

The first solution to the long object problem in
spiral cone beam CT is the Radon space driven
(spiral + 2 circles) algorithm reported in [1,2]. A
key part of the reconstruction algorithm isthe
data-combination technique in which the radial
Radon derivative for each plane intersecting the
ROI is obtained by combining the partial results
computed from the cone beam data at the various
source positions that the plane intersects. The
method is illustrated in Figure 1 which represents
aplane Q intersecting the ROI and the scan path.
Since the partial planes do not overlap and
together they completely cover the portion of
plane Q that lies within the ROI, the Radon
derivative for plane Q can be obtained exactly by
summing the Radon derivatives for the partial
planes. From Figure 1 it isevident that the
portions of the object outside the ROI do not
need to be irradiated. Therefore during scanning
collimators can be used to block off radiation
from reaching those portions.

Restricting the cone beam projection data to the
appropriate angular range for data combination
can be accomplished by a masking process. The
mask consists of atop curve and a bottom curve
formed by projecting on the detector the spiral
turn above and the turn below from the current
source position. It can be easily seen that such
masking procedure corresponds exactly to the
angular range bound by the prior and the
subsequent source positions as indicated in
Figure 1. We shall refer to this mask as the data-
combination mask. For aflat detector located at
the rotation axis such that the line connecting the
source to the detector origin is normal to the



Figurel. A typical integration plane covering the ROI
defined by the source positions. Other
integration planes may have more or less spira
scan path intersections, and may not intersect
either the top or the bottom circle scan paths.

detector plane, the equation for the top curve for
the spiral scan is given by:

2

h  4OR
vV=—7tan 1B— +u—2 u=0

2 u R

1)

h O 4R u? <0
V=—mr+tan +— u

21 Eﬂ RZE

where u and v are the Cartesian coordinate axes
of the detector with the v axis coinciding with the
rotation axis, Risthe radius of the spiral, and his
the distance between adjacent spiral turns (the
pitch). The bottom curveisthe reflection of the
top curve about the origin, i.e. (u,v) -> (-u,-v).
The shape of the spiral mask is shown in Figure
2. Thefigure assumes right-handed spiral
rotation.

Projection of the spiral turn above

&
L..

—

Projection of the spiral turn below

Figure 2. The mask on the flat detector which definesthe
desired partial plane for Radon derivative
computation. For any plane of integration, the
portion of itsintersection line with the detector
within the mask is the desired partia plane.

In the backprojection version of the (spiral + 2
circles) algorithm [3], the masked cone beam
data are 2D filtered and then 3D backprojected.
The 2D filtering is carried out in 2 different
manners for different parts of the cone beam
data: the data inside the mask are line-by-line
ramp filtered in the direction of the projected
scan path direction, whereas those on the mask
boundary are processed with a 2D filter which
includes 2D backprojection at al angles on the
detector plane. By virtue of the Radon inversion
formulathe 2D backprojection operation should
be extended to the entire detector plane extended
to infinity; in practiceit is extended to the extent
sufficient to cover the entire ROI. Through the
line-by-line ramp filtering in the direction of the
projected scan path direction the data inside the
mask boundary only affect alocalized portion of
the reconstruction volume. On the other hand the
data on the mask boundary affect the entire ROI
because of the long range of the 2D
backprojection. Thislong range correlation
caused by the mask boundary datais the crux of
the long object problem employing
backprojection driven agorithms.



[1. Spiral scan long object problem

Recently a number of approaches solving the
long object problem with only the spiral scan
appeared in the literature. In the virtual circle
(VC) method reported by Kudo et al [4] itis
found that by utilizing the unique property of the
PI lines[5], removing the circlesin the (spiral +
2 circles) algorithm contaminates only alocalized
portion at each end of the ROI, and thus the
remaining portion of the ROI can still be
reconstructed without contamination from
overlaying materials. In the zero boundary (ZB)
method reported by Defrise et a [6], the unique
property of the Pl linesis also utilized to remove
the long range correlation between different
regions of the object caused by the data on the
mask boundary. Inthelocal ROI (LR) method
developed by Sauer et al [7] and later
implemented by Schaller et a [8], de-correlation
between different regions of the object is
achieved on the @-planes, which are the planes
which contain the z axis in the Radon space.
Subsequently the backprojection version of the
local ROI method was developed by Tam [9] and
implemented by Lauritsch et al [10]. Unlike the
(spiral + 2 circles) agorithm, with only spiral
scan it is necessary to scan some portions of the
object adjacent to the ROI in order to reconstruct
the ROI without contamination; the spiral path
required beyond the ROI is referred to as
overscan in the literature. For comparison the
overscan for the (spiral + 2 circles) algorithmis
zero.

All approaches are theoretically exact solutions
to the long object problem. However, even
among the backprojection driven algorithms very
different methodol ogies are employed in
reconstructing the ROI without contamination,
and the overscan required by each algorithmis
substantially different from the others. It isnot
apparent that the three methods have any features
in common.

I11. A sufficient condition

In this paper a sufficient condition for
backprojection driven image reconstruction
algorithms for the long object problem with spiral
scan isderived. The analysisis based on the
analysis of the response of a point object
enclosed inside the spiral path. It isfound that
the support of the contribution to the
reconstruction volume from the cone beam data
on the mask boundary becomes localized when
certain condition is satisfied. Each mask
boundary data point correspondsto a Pl line, as
illustrated in Figure 3, which intersects two
source positions. At each of the 2 source
positions the mask boundary data point, after
some processing, is 2D backprojected along each
line intersecting the data point, and then 3D
backprojected onto the 3D backprojection planes
defined by the source position and each 2D
backprojection line through the data point. Thus
each 3D backprojection plane intersects the line
connecting the source position and the data point,
which isthe PI line corresponding to the data
point. Since the 2 source positions that acquire
the mask boundary data point have the same Pl
line, it follows that the 2 source positions have
the same set of 3D backprojection planes when
processing the data point.

Consider afixed mask boundary data point. If

for each 3D backprojection plane the data point is
processed, which includes filtering and 3D
backprojection, to the same extent at the 2 source
positions that acquire the data point, then the
support of the contribution to the reconstruction
volume from the data point can be shown to be
localized. The minimum size of the region on the
detector plane required for 2D backprojection

and the subsequent 3D backprojection for these
mask boundary data can be prescribed using
projective geometry, and is found to be smaller
than the minimum size according to current
understanding, viz. the size required to cover the
entire ROI. The extent to which the detector size
is reduced depends on the spiral pitch, and is
substantial for small pitch. The reduction in the
detector sizeisimportant for the reduction in the
amount of 3D backprojection computation.

Among the three above-mentioned long object



backprojection driven reconstruction algorithms,
the VC method and the backprojection LR
method are found to satisfy the sufficient
condition, but not the ZB method. Based on the
sufficient condition a general class of exact,
backprojection driven reconstruction algorithms
for long object imaging in spiral scan cone beam
CT isdeveloped. It isfound that the VC method
iIsaspecial case of this class of algorithms.

X-ray source

Figure3 Mask boundary data and the corresponding 2
source positions on the PI lines.
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A Simple Algorithm for Increased Helical Pitch in
Cone-Beam CT

Michael D. Silver, Katsuyuki Taguchi, Ilmar Hein"

I. INTRODUCTION

A goal of cone-beam CT is to decrease the scan time
needed to image a volume of the patient. Four things are
required to meet this goal: (1) a detector with multiple rows
of sensors, (2) higher bandwidth data acquisition system
and image processor to handle the increased data rates and
need for fast reconstruction, (3) high helical pitch, (4) a
practical reconstruction algorithm that lends itself to fast
reconstruction times. Within the last several years, CT-
systems with first two, then four row detector arrays have
been introduced to the marketplace [1]-[5]. The four row
arrays are actually combinations of finer pitched detectors.
Table I gives a comparison of the detector designs for the
Toshiba Aquilion Multi, the LightSpeed QX/i from General
Electric Medical Systems, the Siemens Volume Zoom and
Marconi Mx8000. All the major manufacturers have
announced plans for an output of 8 and/or 16 slices, which
requires a new or modified detector design from Siemens
and Marconi. Toshiba has presented images taken on a 256-
row prototype detector array [6], [7]. Thus, detector
development for wider cone-angles is underway and will
lead to faster scan times. The manufacturers are working on
the second requirement as computer electronics improve.
This presentation looks at the last two requirements. We
present a scheme for high helical pitch while maintaining a
practical although approximate reconstruction algorithm.

So far, the four row CT-systems have used two-
dimensional reconstruction algorithms [8]-[10]. As more
rows are added, we have found that three-dimensional
backprojection leads to images with better quality than the
two-dimensional approximations [11], [12]. Therefore, we
believe that as more rows are added to the detector, the

reconstruction problem approaches the fully three-
dimensional problem. However, because the cone angle is
not too large, we propose an approximate algorithm that is a
modification of helical Feldkamp [13], [14], where the
maximum helical pitch limit is determined by two-
dimensional arguments as described in the next section.
Moreover, the Feldkamp approach is based on a heuristic
use of one-dimensional convolution (rigorous for two-
dimensional reconstruction) combined with true three-
dimensional backprojection.

We first reported on these ideas at a previous Fully 3D
Meeting [15], [16] and presented some results from image
evaluation at the last RSNA meeting [17]. Recently [18],
we presented how we relate helical pitch, number of views
to reconstruct, and field-of-view based on a weighting
scheme published in Medical Physics [19]. This will be
briefly summarized here. In this study, we show how we
can extend the maximum helical pitch to higher values.

II. REVIEW: HELICAL, CONE-BEAM SCANNING

A. Validity requirements

Backprojection follows the straight-line ray-sum from the
focal spot of the x-ray source through a pixel of interest in
the image volume and onto the two-dimensional detector
array. Typically, the processed signal at this location in the
detector array is weighted and added to the contents of the
voxel. This is repeated for all voxels and for a range of x-
ray source angles. For helical, cone-beam scanning, the
relation between a voxel and a location in the detector array
for a given source angle is given by

TABLE 1
Comparison of Four-row CT-Scanners

Toshiba GE LightSpeed Siemens Volume Zoom
Aquilion Multi Marconi Mx8000
Detector Rows 34 16 8
(4x0.5,30x1) (16 x 1.25) 2x1,2x1.5,2x2.5,2x5)

DAS Output and
nominal slice thicknesses

4x0.5,4x(1to8)

4 x(1.25,2.5,3.75,5)

2x0.5,4x(1,2.5,5)

Widths of detector rows are given in mm as projected at isocenter. Nominal slice thicknesses are in mm.
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where y is the fan angle (in the x-y plane) of the ray-sum,
o is the cone angle of the ray-sum,
[ is the x-ray source angle,
Bo (z) is the source angle when the focal spot is in
the image slice at z,
x,y,z is the coordinates of an image pixel,
H is the helical pitch: table travel per rotation of the
source,

and L(B,x,y)=J(Rsin|3+x)2+(Rcos|3—y)2 : 3)

L is the distance from the focal spot to the pixel x,y,z times
the cosine of the cone angle, R is the radial distance of the
focal spot to isocenter. The coordinate system moves with
the patient/table so that each image slice is at a fixed z.

Multi-row CT-scanners have detector arrays that are sec-
tions of a cylinder, focused on the source; thus equal an-
gular increments Ay and equal axial linear increments sepa-
rate the individual sensor elements. Therefore, v is a natural
coordinate for the ray-sum but (2) is changed in favor of
detector rows (also known as slices or segments),

B-Bolz)|R
n(B:x9y>Z)= 2TIZL(Oﬁfx,)y) Ty s (4)
where 7 is the relative detector row,
-hsns ), (5)
H
and 1, =W (6)

with W as the full axial height of the detector array as pro-
jected at isocenter. Thus, 7, is the normalized helical pitch
ratio.

A ray-sum is valid—that is, measured—if y and n are
locations within the physical detector array. For helical,
cone-beam CT, the key validity equation is (5) combined
with (4). We can solve (4) with n =+, for the surfaces of

B, asa function of voxel position x,y,z; B, represents the

source angular position when the voxel x,y,z enters and then
leaves the cone-beam. These surfaces are warped,
depending on helical pitch. The difference of the two
surfaces shows that up to a normalized helical pitch ratio of
2, all voxels have at least 180° of coverage. Unfortunately,
the voxels don’t have the same 180° range of coverage.

This implies that a reconstruction algorithm could exist that
uses only valid ray-sums up to a normalized helical pitch
ratio of 2. However, such as algorithm could have
additional computational complexities.

B. Weighting Scheme

The helical pitch determines how long a given voxel is
irradiated. Obviously, the higher the pitch, the less the
voxel is within the rotating cone-beam and vice versa. We
adapt the weighting scheme of [19] to helical cone-beam
scanning. Consider the sinogram from a single detector
row. Suppose all the voxels of a given slice are in the cone-
beam for at least mw+Ap as shown in Fig. 1a. The weighting

scheme, based on Parker’s half-scan method [20],
introduces a virtual fan-angle, 2I', such that 2" = AB, as

shown in Fig. 1b. Use the same weights as in half-scan
[20], [21] for the redundant (in two-dimensions) triangles
but with 2T as the fan-angle.

C. Helical Pitch Limits

Under the condition that we use valid rays-sums, as
described in Section Il.a, and that all voxels in a slice are
reconstructed over the same angular range of the source,
then the relation between the angular range of the source
used in the reconstruction, the helical pitch, and the field-
of-view FOV (R is the source radius) can be shown to be
[17]:

21 Fov
B =42l =—x|1-——— 7

B, -6, FH ( - ) ™)
The minimum and maximum values for the helical pitch

correspond to when the virtual fan-angle approaches 5t and

2y, , the true fan-angle, respectively:

. Fov
7y (min, FOV) =1-—— 8
i ( ) R ®)
2n .
1, (max, FOV) = 1, (min, FOV') . )
T+ 2y,

III. INCREASE THE HELICAL PITCH

Keeping the helical pitch below the limit given in (9)
assures that all ray-sums that go into making the image are
valid ray-sums in a three-dimensional sense, although we
use weighting derived from two-dimensional arguments.
Consider again Fig. 1b. For the smaller FOV’s, the ray-sum
values in the region

sin'l(Fz(;V)<|y|< Yo (10)
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Fig. 1a. Sinogram made from one row of the
detector. Similarly shaded regions contain
redundant information (ignoring the cone-angle).

max

are zero. Note that y,, =sin™ (%) , where FOV,, is

the maximum field-of-view for the scanner. This implies
that the range of validity for (7) is increased. Instead of

Ty (max, FOV)being given by when the virtual fan-angle

reaches 2y, , it is given by when the virtual fan-angle

reaches 2sin™ (%) . Therefore, (9) becomes

¥ (max, FOV') = 2n gy (minFOV) (1)
T+2sin” | ——
2R

The ratio of the increase is

7+ 2sin™ FOVu
r];(max,FOV) 2R

r,, (max, FOV) . Zsin_l(FOV)

(12)

Fig. 2 compares the new maximum for the helical pitch
with the previous calculation as a function of FOV. We
demonstrate the efficacy of the higher helical pitch with a
computer simulation of a 16-row cone-beam CT-scanner
using clinical images.

Maximum Normalized Helical Pitch Ratio
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Fig. 1b. Sinogram including two strips of virtual (zeros)
data. Fan angle is increased from 2y,, to 2I". The shaded
regions contain redundant information (ignoring the cone
angle).
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Fig. 2. Maximum helical pitch as a function of FOV. Both curves
require valid ray-sums and a simple reconstruction algorithm. The
previous method uses (9) while the new method uses (11). The
curves assume a source radius of 600 mm, a maximum FOV of
500 mm.
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Abstract

This contribution addresses the reduction of artifacts in
cone-beam tomography (CT and SPECT/PET) that are
caused by imperfect scanner mechanical alignment (i.e.
misalignment). Such artifacts may show up as double
contours, split edges, smearing, loss of resolution, change
in magnification etc. Misalignment is a problem commonly
recognized in SPECT/PET (see for example [12]) whereas
in CT its importance has only recently been emphasized
with the advent of cone beam geometry [5][9][11],
although residual misalignment can be responsible for
stair-step artifacts even in single-row helical scanners[7].
In order to improve the quality of reconstructed imagesitis
therefore necessary to take care of misalignment errors,
either by proper scanner alignment or by measuring the
errors in advance and forwarding them to the
reconstruction algorithm. As high precision mechanical
components are very expensive it may be more promising
to take the latter approach but the accurate measurement of
misalignment parameters still remains a great problem, in
particular in the case of high resolution microCT (UCT).
Here we investigated a practical approach: Is it possible to
achieve satisfactory artifact reduction by correcting only a
few vita misalignment parameters that can be measured
easily. We used an modified Feldkamp-based circular scan
reconstruction algorithm that we have developed for our
MCT cone-beam scanner [1]. This algorithm incorporates
corrections for al possible misaignment errors.
Misdlignment compensation is embedded in the
backprojection.

Cone-beam geometry and scanner misalignment

The key components of a cone beam CT scanner are the X-
ray source, a two-dimensional X-ray detector and a sample
positioner located between them. In uCT typically the tube
and detector remain fixed and the object is rotated while in
medical CT the object is at rest. However cone beam CT
with rotating source and detector has not been realized yet.
In SPECT the detector (gamma camera) is equipped with a
converging collimator, which focuses at some point behind
the object. The detector rotates about the patient along a
circular path. For convenience in this contribution we will
refer to a CT scanner, but our analysis remains valid for
SPECT aswell.

Inanideal case the scanner is perfectly aligned, i.e.:

e the straight line between the X-ray foca spot and the
center of the detector is normal to the detector surface;
this is called the central ray that together with central
row of the detector defines the midplane

e the axis-of-rotation (AOR) is parale to the detector
columns and is projected onto the central column.

There are several reasons why in practice residua

misalignments are unavoidable:

o fine adjustment of the scanner requires high precision
positioning mechanics, which might be often too
expensive to be worth building into the scanner.

e misalignment may result from an unstable X-ray focal
spot position, which is usually the case in X-ray tubes
with avery small focus size.

There are several degrees of freedom for deviation from

the ideal geometry. If we arbitrarily take the central ray

and the midplane as a reference then the misalignment
errors can be defined as follows (Fig. 1):
e deviation of the AOR from ideal orientation and
position
= tilt (inclination) towards the X-ray tube
= skew (rotation) around the central ray
= horizontal transversal off-center shift, i.e. along
detector rows

= horizontal longitudinal shift, i.e. deviation from
the ideal position between the X-ray tube and the
detector

e deviation of the X-ray source location from the ideal
position
= vertical shift from the midplane
= horizontal transversal shift from the central ray
= horizontal longitudinal shift, i.e. deviation of the

X-ray tube <> detector distance from the assumed
value.

Other possible errors (AOR wobble etc.) are assumed to be
negligible or not present at al. For spiral/helical and other
more complex acquisition paths more errors have to be
appended to the list. For example the direction of object
trandation (table feed in medical CT scanners) may not be
parallel to the AOR. The scanned object is then
incrementally shifted off-center while being advanced to
the next projection position on the spiral path.
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Fig. 1. Definitions of misalignment errors

Reconstruction algorithm with misalignment correction

The original Feldkamp reconstruction a gorithm consists of

the three main steps:

1) for every detector row and for every projection the
projection pixels are independently weighted and then
filtered, with the same one-dimensional filter being
applied to each projection row. Weighting is done
under the assumption that the midplane is
perpendicular to the AOR and filtration is done along
the projection lines perpendicular to the AOR. In the
case of AOR skew weighting and filtration direction
do not coincide with detector rows.

2) cone-beam backprojection.

An idea agorithm incorporating misalignment correction

should consist of the following steps:

1) weighting of projections with coefficients corrected
for al errors

2) filtration of weighted projections, rotated to correct for
the AOR skew

3) cone-beam backprojection corrected for tube position
and tube < object <> detector distances.

In practice such an algorithm has disadvantages. Before the
entire volume is generated usually single preview dlices are
reconstructed, in order to select aregion of interest for the
final volume reconstruction and to possibly interactively
tune misalignment correction. In case of the idea
algorithm a complete weighting and filtration of all
projections is required to reconstruct even a single preview
dice. Thus the reconstruction time would be heavily
dominated by the filtration.

Therefore we developed an agorithm with built in

misalignment correction where weighting and filtration is

done on uncorrected projections. Afterwards the
projections can repeatedly be used for backprojections
without repeated weighting and filtration. The
reconstruction algorithm, which has been described earlier

[3][4], uses homogeneous coordinates for the system

description and employs an incremental, pixel-driven

backprojection.

In the case of a perfectly aligned scanner our algorithm

produces results identical to the Feldkamp agorithm

otherwise additional artifacts are introduced with our

method. However, if AOR tilt, skew and shift errors are
small we expect only a minor additional quality
degradation of the final images. In practice they are
significantly smaller than those inherent to the approximate
Feldkamp algorithm.

I nfluence of misalignment on image quality

Vertical X-ray tube shift can be interpreted as if the tube
were located on a new, vertically shifted “ midplane”. Asa
conseguence the sharp dice of the reconstructed volume
moves up/down. The quality of reconstructed imagesis not
be affected otherwise.

Horizontal X-ray tube transversal shift can be interpreted
asif the object were shifted across the field of view and the
AOR were transversally shifted and the detector dightly
rotated. But with proper AOR shift-only correction the
artifacts would be almost eliminated.

Horizontal X-ray tube longitudinal shift changes the
object magnification. In the consequence images will be
reconstructed “not to scale” and therefore cannot be used
for quantitative evaluation of tomograms, but will be
otherwise artifact-free.

AOR tilt moves the object central plane, i.e. the plane
being perpendicular to the AOR and containing the tube
focus. In case of tilt this plane intersects the detector
above/below its central row. As a consequence weighting
coefficients for projection pixels are modified. The visible
effect of the tilt is that slice smearing towards top/bottom
of the object will become unsymmetrical.

AOR skew has the most severe impact on the image
quality in our algorithm, as we filter not only incorrectly
weighted projections (weighting coefficients change their
values due to the AOR skew), but also take slanted rows,
instead of rows perpendicular to the AOR. This leads to
crosstalk between dices. However, if the skew angle is
small and if the object structure changes slowly along the
AOR then the actualy filtered and the required rows do not
differ very much.

AOR horizontal transversal shift (off center shift) is
responsible for double contours in reconstructed images. It
can be efficiently eliminated in the backprojection.

AOR longitudinal shift —see X-ray tube.



M isalignment measur ement

The critical problem for an effective implementation of our
algorithm is proper measurement of scanner misalignment.
Various procedures have been propose for this purpose
[6][8][9]. Some of them take into account all misalignment
errors, some are restricted to only a few, assuming others
to be negligible. A good overview has been given in [7]
along with their own method, in which several equiangular
circular projections of a metal sphere phantom are
acquired. Two spheres — one below and one above the
midplane — are mounted away from the AOR. In a
superimposed image their shadows form two ellipses — one
in the upper and one in the lower haf of the image.
Scanner misalignment parameters are calculated from the
ellipses’ positions, orientations, and sizes.

We have evaluated the ‘two sphere method’ with respect to
cone beam UCT using simulations and experiments. We
simulated the CT acquisition with known scanner
misalignments for cone angles ranging from 5° to 40°. The
AOR skew error could always be determined with at |east
1% accuracy. This was, however, not the case for the AOR
shift. Accuracy errors in this parameter are linearly
dependent on the error in the determination of the center of
the spheres. A 1% error in the localization of the sphere
center resulted in an AOR shift error of 0.4 pixel for a 40°
cone angle and of 12 pixel for an 5° cone angle. The other
misalignment errors could also determined with sufficient
accuracy so that artifacts in the reconstructed images were
negligible, apart from the AOR tilt error, which cannot be
determined with this method at all. In practice even a 1%
accuracy error in the detection of the sphere centers will be
extremely difficult to achieve due to noise and potential
distortionsin the detector geometry.

Reconstruction algorithm verification

To evauate our reconstruction agorithm and its potential
to correct for misalignment errors we performed
simulations of the numerica Defrise phantom and we
scanned a physical phantom using typical acquisition
parameters (512° pixel detector matrix, 2 x 5.7° cone angle,
720 equidistant projections acquired over 360°). The
following projection sets were simulated: misalignment-
free as a reference, AOR tilt of 0.2°, AOR skew of 0.75°,
AOR transversal shift of 20 pixels and a combination of all
three errors, i.e. errors equal to the actually measured for
the physical Defrise phantom.

The Defrise phantom has been well established as the test
object for demonstrating artifacts incurred by approximate
reconstruction algorithms. However, it may not optimal for
investigating the effect of scanner misalignment. Also it
may overemphasize artifacts compared to samples
typicaly investigated with uCT. Other phantoms, more
suitable to this task need to be developed

Reconstruction artifactsin simulated Defrise phantom

The dlice reconstructed with our algorithm in the case of no
misalignment (Fig. 2a) contains characteristic Feldkamp
artifacts. In case of a combined AOR misalignment the
uncorrected image (Fig. 2.b) is heavily distorted. The
image corrected for al three errors (Fig. 2.c) contains only
residual artifacts, resulting from (consciously) imperfect
handling of weighting/filtration in our algorithm. The sharp
part of the image moved down dlightly, which results from
improper AOR tilt corrections. Slight horizontal streaks
originating at the ends of the disks result from the AOR
skew error. The AOR shift has been eliminated and leaves
no artifacts. We then restricted our misalignment
corrections to two errors: AOR skew and transversal shift.
The fourth image (Fig. 2.d) shows an image reconstructed
without tilt correction. There are no significant differences
between the c. and d. images, e.g. traces of thetilt error.

Fig. 2. Sagittal dices reconstructed from simulated
projections: a— ideal case (no misalignment), b — AOR tilt,
skew and shift uncorrected, ¢ — al three corrected, d — AOR
skew and shift corrected only (e.g. no tilt correction)

Images of a physical (scanned) Defrise phantom

Reconstructed images of the physical phantom demonstrate
the influence of misalignment errors on the image quality
in a measured phantom. It is clear that in the real case all
seven misalignment errors are present. The uncorrected
image is heavily distorted. However, the image corrected
for AOR shift, skew and tilt, e.g. assuming other four errors
to be negligible (as actually determined by the dual-ellipse
method), contains only residual artifacts. Furthermore, the
image with AOR shift and skew correction only (e.g. not
tilt correction) does not look qualitatively worse. Hence the
influence of thetilt error is negligible.



Fig. 3. Sagittal dlices reconstructed from measured
projections: a — uncorrected misalignment, b — AOR skew,
shift and tilt corrected, ¢ — AOR skew and shift corrected
(no tilt correction)

Conclusions

This paper concerns the problem of scanner mechanical
misalignment in cone-beam tomography. We have defined
seven misalignment errors which may be present in a real-
world scanner and analyzed their influence on the
reconstructed image quality. We then proposed an effective
approximate implementation of a Feldkamp-based
reconstruction algorithm capable of correcting for al
misalignment errors. In the algorithm a practical approach
is used, with weighting and filtration performed on
uncorrected projections and misalignment correction built
into backprojection. The concept of storing weighted and
filtered projections to be later used in backprojection
proved to be advantageous in terms of saving processing
time.

The problem o reliable measurement of all misalignment
errors in a given scanner remains unsolved, especialy for
high resolution PCT scanners with small cone angles.
Existing procedures did not prove to be robust enough to
provide satisfactory results. Therefore we restricted
misalignment correction to two main errors (AOR shift and
skew) to obtain good quality tomograms. We showed that
in a practical case artifacts caused by misalignment are
therewith significantly reduced. However, the algorithm
till preserves its potential to correct for al errors, should
they be known for a given scanner.

The agorithm has been validated on simulated and
physical Defrise phantom. Rea data were acquired on a
MCT scanner, whose misalignment had been measured.
Images reconstructed with the proposed algorithm do not
suffer from significant additional (apart from Feldkamp-
specific) artifacts.
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I. INTRODUCTION

Positivity in regularized emission computed tomography
(ECT) reconstruction is important for quantitative
accuracy, especially for low-count data. However, it is
often difficult to impose positivity on the reconstruction
without suffering some other drawback, such as speed
or lack of analyzability of the algorithm. A general
framework for positivity-constrained ECT reconstruction
has been the formulation and possibly constrained
minimization of an objective function comprising a data
penalty (usually log likelihood) and penalty term (a.k.a.
“prior” in Bayesian terms). Here we propose to embed
a positivity constraint via a novel prior for 3D ECT
reconstruction.

The prior generalizes a notion of I-divergence proposed
by Csiszar [1], and also bears a superficial similarity to
formulations previously used in ECT [2], [3], [4]. However,
unlike previous formulations, our new formulation also
includes a notion of object smoothness in addition to
positivity.  In addition, the priors are convex and
that makes the reconstruction independent of initial
conditions.

In Sec.II, we describe the new priors mathematically
and prove convexity. In Sec.III, we present initial results
showing 2D and 3D reconstructions using our new priors,
and compare these anecdotally to reconstructions with a
conventional smoothing prior. In Sec.IV, we compare our
work with other relevant work.

II. THEORY

A. Regularized Likelihood Reconstruction

Let g = {g;;: = 1,.,M} and £ = {f,;n = 1,..,N}
be the emission data and object, respectively. Here, f
and g are 1D vectors obtained by lexicographic ordering
3D entities into 1D vector. The projection data g has
an independent Poisson distribution with the (negative)
log-likelihood function

Qr(g;f) =— Z{gz log g; — gi} (1)

where g = Hf + T is the Poisson mean of g with mean
background events r. Note that H is the M x N system

matrix with element H,;, indicating the probability of a
photon from pixel n detected in sinogram bin 3.

From the Bayes theorem, the maximum a posteriori
(MAP) reconstruction estimate f of the object f is
obtained by optimizing a regularized likelihood objective
O (f; g) with prior (or penalty) objective @ p(f). Therefore,
the MAP reconstruction f is computed by

f = argmin{®(g:f) + A0p(f)}. (2)

where A > 0 is the global weight controlling the influence
of the prior.

B. Conventional Smoothing Prior

The objective function for a conventional smoothing
prior usually takes the following form

Pp(f) = Z Z Wnp O(fro — fr) (3)

n n’'eN(n)

where N'(n) indicates the neighborhood system, and
Wpyn > 0 the associated weight. The potential function
&(frn — fnr) penalizes the difference between neighborhood
pixels. For example, for a quadratic membrane prior [5],
&(fn—fnr) = 1/2(fn— fnr)?. Note that neither ®;, nor ®%
provides a natural positivity enforcement in Eq.(2). Thus,
Eq.(2) is a possibly difficult constrained optimization
problem since one needs to enforce the non-negativity
constraint in the reconstruction.

C. Priors Based on Cross-Entropy

As a stepping stone towards our new priors, we first
consider another, older form based on I-divergence. The
I-divergence between two positive vectors a and b is
S(a,b) =3, (aylog 3 —an +by). S(a, b) is also termed
“cross-entropy” in [3], [4] though definitions of cross-
entropy vary. In [3], and [4], priors of the form ®% (f; m) =
S(f,m) or S(m,f) have been proposed. Here, m is an
external “reference” vector chosen empirically. Each f,, is
attracted towards its corresponding m,,, and positivity of
f is maintained by the form of S. The “reference vector”
m must be determined empirically! (For all m,,’s equal,
the cross-entropy prior becomes a max entropy prior.)
In addition to the problem of determining m, there is



no explicit smoothing of f implicit in @ (f;m). Thus

®% (f; m) suffers from two problems.

D. A New Prior: Smoothed I-Divergence

To solve these problems while retaining the positivity,
convexity and differentiability desiderata of S(f, m)
priors, we define a new prior, termed a smoothed I
divergence prior. In this definition, m is a variable to be
estimated, and the m,,’s are defined on a lattice coincident
with the f,,. The definition of our first form of the prior
is:

@ém(ﬂ m) = Z Z Wi G(fry M)

n n’eN(n)

_Z Z wrm{fnl()gi_ n + M } (4)

n n’eN(n)

where N (n) again defines a neighborhood of n, and
Wnn > 0 are positive weights. The form of Eq.(4) embeds
positivity in f, and the prior is also differentiable.

To explore <I>£m further, consider its role in MAP
reconstruction. Since m is now a variable, the
optimization in Eq.(2) (now wunconstrained) becomes a
joint estimation:

f,rhzargrfnin{@L(g;f)+)\<I>{3m(f,m)}. (5)
We propose to implement this joint estimation by a form

of alternating (on f and m) descent, which for iteration k
becomes

= argmin{®r(g:f) + AL (£} (6)
" = argmin{®f" (! m)} (7

Equation (6), with m* fixed can be carried out by a
suitable unconstrained gradient method. Equation (7) can
be solved in closed form and has the interesting solution

£k
Ak Ene./\f(n’) w"n/fn

my,, =

(®)

ZnGN(n’) Wnn!

that is, a weighted arithmetic mean of the ffj’s in
a neighborhood surrounding n’. Plugging Eq.(8) into
Eq.(6), one thus sees the smoothing nature of the new
prior, thus solving the first problem. The second problem
has also been solved: vector m need not be determined
empirically, and its formulation yields an appealing
interpretation.

A second form of the new prior may be obtained by
swapping f, m in Eq.(4) to obtain

Z Z Wit G(Mep s fr)
n n’'eN(n)

— Z Z Whp {Mipy log f— — My + fr} 9)

n n’eN(n)

Again, q)gf maintains positivity and is differentiable.
When plugged into the alternation Egs.(6)(7), however,
the update Eq.(8) becomes something different:

k ZnEN(n’) Wnn! IOg f'rI“LC

M, = exp

7 10
ZnEN(n’) Wnn! ( )

which is a weighted geometric mean of the neighborhood
pixels N'(n). Again, we get a prescription for m, and a
novel form of smoothing for f. For convenience, we refer
to Eq.(4) as the FM prior, and Eq.(9) as the MF prior,
with the quadratic version of Eq.(3) the MM prior.

E. Converity

We would like to show the global convexity of
the regularized likelihood objective with the proposed
smoothing priors. Since the Poisson likelihood is convex,
it is sufficient to show that the prior is convex (w.r.t. both
f and m).

The second derivatives of the MF prior objective are

2ot My
- et
o2ap! 1
8mi/ - Z ! My (12)
o2a’p! 1
— P  _ _ ' — 13
Dm0 'y (13)
It follows, for all y,, z,/ that
2P mf 82<I>mf 82q)mf
2 n<n’ N~ a5 2/
2 g G, 2 o
Wnn!
= Z P (YnMp — 2/ fr)? > 0. (14)
n'''n

n,n’

The Hessian matrix is positive semi-definite (w.r.t. f,m),
and thus the MF prior is convex. For the convexity of the
FM prior, the proof follows by symmetry. Convexity of
the prior or likelihood alone does not guarantee a unique
solution, but when the likelihood and prior are combined
as in Eq.(2), the solution is unique.

III. RESULTS

In this section, we anecdotally explore 2D and 3D
reconstructions using @Iﬁf and @{;m and show that the
reconstructions are qualitatively similar to those obtained
with a (positivity constrained) conventional quadratic
smoothing prior.

A. Optimization Details

Since the new priors embed positivity constraints, any
unconstrained method can be used to optimize Eq.(6).
Here, we use the Polak-Ribiere form of the preconditioned
conjugate-gradient (PCG) method [6] with a simple
diagonal preconditioner. For the line search, we use the



method of cubic interpolation [6]. We use, for 2D, a
4 nearest-neighborhood (4NN) system with weights=1.0
for each neighborhood pixel, and 4.0 for the center pixel.
For 3D, we use a 6NN system with weights=1.0 for each
neighborhood voxel, and 6.0 for the center voxel.

For comparison, we also performed a series of
2D reconstructions using the conventional quadratic
smoothing ®%. We again use a 4NN neighborhood with
weights as above. To maintain positivity, we used the slow
EM-MAP-ICM algorithm presented in [5].

PPDPD

(d)

(a) (b) (c)

ODD

(e) (f) (8)
Fig. 1. (a) The 64x64 phantom used in the 2-D simulations. The
noiseless anecdotal reconstructions with priors of (b) MF, (¢) FM,
and (d) MM. The anecdotal reconstructions of 100K counts data
using regularized likelihood reconstruction with priors of (e) MF,
(f) FM, and (g) MM.

B. Anecdotal Reconstructions

To test the proposed new priors, we first generated
noiseless and noisy sinograms using the 2D 64x64
phantom shown in Fig.1(a). The 2D phantom has an
intensity ratio of (3.3:1:0) for (ellipse:circle:background).
The projection data had dimensions of 65 angles by
96 detector bins.  Only Poisson noise is simulated
and no other physical or geometrical blurring effects or
background events are modeled here. The noisy sinogram
is simulated with 100K counts.

The sinograms are then reconstructed using MF, FM
and MM priors as described above, with the same
smoothing parameter value A = 1.2 for the noiseless
case, and A = 2.0 for the noisy case. The noiseless
reconstructions are displayed in Fig.1l for (b) MF, (c)
FM, and (d) MM, respectively, while Fig.1(e)(f)(g) are
for noisy reconstructions of MF, FM, and MM. A profile
plot along the center row of the noisy reconstructions
in Fig.1(e)(f)(g) is illustrated in Fig.2 along with the
phantom. The profile result demonstrates the similar
behavior of the new prior to that of a positivity-
constrained quadratic smoothing prior.

A few performance measures are shown in Fig.3. Plots
of log posterior vs. iteration, and rmse vs. iteration
appear in Fig.3(a) and (b), respectively, for the FM results
of Fig.1(f), but we draw no conclusions from these since
the simulations are not yet sufficiently realistic. We also
display the bias and STD (standard deviation) images

a0 50 60 70

Fig. 2. Profile plots along the center row of phantom, and
regularized likelihood reconstructions in Figs.1 (e) MF, (f) FM, and
(g) MM priors for the noisy data of 100K counts.

for the FM prior using 200 noisy trials of 100K counts
from the same 2D phantom. The bias and STD images
are computed by bias = 555 >,(f' — f) and STD =

\/ 185 Zl(f‘l — £)2 where f is the mean reconstruction over

200 trials, f the phantom, and f! is the /th reconstruction.
The results for MF and MM priors are similar. As A
increases, the variance as seen in Fig.3(d) tends to become
more uniform.

5 %10
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Fig. 3. The pelgfo)rmance of the FM priors is ilh(lstZ"ated by (a) the
log posterior and (b) the rmse vs. iterations. Also, the bias and
standard deviation images over 200 noise trials for the FM prior
regularized reconstructions are shown in (c) and (d), respectively.

We also generated a 3D phantom with 10 slices of
64x64 each. Each slice has two small hot and cold
circles with an ellipse background. The intensity ratio
is (hot:ellipse:cold)=(1.5:1:0.6). The hot and cold circles
in the top slice have diameters of 10 and 12 voxels,
respectively, while each slice below contains hot and cold
circles of reducing diameters at 1 voxel per slice. A
noisy sinogram is generated with 1000K total counts and
reconstructed with a 3D FM prior of 6NN. Here, we show
only 4 slices of the 3D phantom in the top row of Fig.4,
and the FM reconstructions with smoothing parameter
A = 5.0 in the bottom row of Fig.4. The 3D results for
the MF and MM priors are qualitatively similar.
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Fig. 4. This figure shows the anecdotal regularized likelihood
reconstruction of a 3D phantom (10 slices and each with the size
of 64x64) using the FM smoothing prior. The top row shows 4
consecutive slices of the phantom, and the bottom row shows their
corresponding FM reconstructions. The projection data is simulated
with a noisy level of 1 million total counts. The smoothing parameter
for this 3D case is A=5.

IV. DISCUSSION

To locate our new work within the galaxy of ECT
reconstruction methods, we take a distant (and wvery
incomplete!) overview of objective-function based
methods in the context of the following desiderata: (a)
speed, (b) need to specify additional parameters beyond a
global weight A, (c) whether a notion of object smoothness
is contained in the objective. We consider 3 categories
of methods, (where “method” = objective + algorithm.)
We do not consider any cases for which positivity is not
imposed or the objective is non-convex.

The original ECT EM-ML algorithm and its variants
led to a natural positivity imposition, but, in terms of
(b) required a stopping criterion and initial condition
specification. True EM-based methods are also
notoriously slow, thus failing on point (a). Regularization
helps, and EM-MAP approaches [7], [5] incorporating
smoothing, satisfied (c), helped (b), but still suffered in
terms of speed (a). Our own method, if using gradient
based methods as in Sec. III, is likely to be faster than an
EM version.

A second (non-EM) category of methods includes
constrained gradient and coordinate-descent methods for
optimization. Imposing positivity for a gradient method
is often complex and difficult, and requires judicious
specification of algorithm-specific parameters [8], [9] to
attain a good result, thus failing on point (b), though
excelling on point (a) and satisfying (c¢). To a great
extent, the failing on (b) can be overcome [10] with
improved methods. Sequential Gauss-Seidel coordinate
descent methods [11], [12] incorporate positivity easily,
and can be fast.

A third category of approaches embeds positivity
directly into the prior. Our approach, and ones based
on cross-entropy [2], [4], [3] and max-entropy [13] apply
here. A very similar prior is the independent gamma
prior proposed in [14]. The cross-entropy and gamma
formulations fail badly on point (b), requiring empirical
specification of a pointwise “reference image” as outlined
in Sec. II-C, and no explicit notion of object smoothness is
incorporated in these approaches. (In [2], [4], smoothing

is indeed introduced in an empirical fashion.) Our own
priors thus surmount the difficulties listed above.

A final, nice feature of our formulation is that the
performance of the method (i.e. mean and covariance of f)
may be analyzable using the theoretical methods in [15].
To qualify for [15], the objective should be (i) smooth, (ii)
nearly quadratic, and (iii) be used in an unconstrained
optimization. We are currently investigating this issue.
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Abstract— In previous work we developed a list-mode it-
erative reconstruction algorithm (LMIRA) for SPECT ap-
plied to two dimensional image reconstruction. In the 2D
case we calculated the emission radiance distribution on the
circular enclosure of the object. This part is the forward
projection. In the backprojection we sampled the radiance
on the intermediate layer using the geometric properties of
the collimator. In 3D reconstruction we have to calculate
the emission radiance distribution on the cylindrical enclo-
sure. To characterize the radiance on the cylinder we need
additional parameters to localize the position on the layer
and the direction of the escaping photons, this results in a 4
dimensional function. The probabilities used in the LMIRA
update equation are calculated from sampling the radiance
with the cylindrical hole structure of the collimator.

Keywords— List-mode, reconstruction, iterative.

I. INTRODUCTION

In binned mode PET the acquired data is often rebinned
to 2D information using single slice rebinning or for exam-
ple Fourier rebinning. In Single Photon Emission Com-
puted Tomography (SPECT) reconstruction it is also pos-
sible not to use the 3D information and perform a 2D slice
by slice reconstruction using the 2D reconstruction meth-
ods. 3D list-mode reconstruction has previously been the
subject of research in positron emission tomography (PET)
[1] and Compton scatter imaging [2]. Fully 3D reconstruc-
tion is useful to incorporate the complete blurring model
to be able to correct for the distance dependent resolution
[3], which is a three dimensional effect. Recently we devel-
oped a 2D list-mode reconstruction method for SPECT ap-
plying a new projector backprojector pair. The list-mode
reconstruction approach differs in several ways from the
bin-mode methods. Acquiring the data in list-mode for-
mat, one can store the interaction location to a high degree
of accuracy (2k by 2k for example) with greater efficiency
than achievable with frame mode acquisition. The gantry
angles do not have to be binned into predefined frames, but
one can record the actual angle thereby removing the im-
pact of angular blurring with continuous acquisition. The
actual energy of the interaction can be recorded instead of
attributing the event’s energy to one of a limited number of
pre-defined windows. It is obvious that when increasing the
dimensionality in this way it is no longer possible to bin the
data into a matrix. Finally, list mode can also store gating
signals without the need for temporal framing of the data
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before this information is completely available. The result
is a significant increase in the fidelity of recording the pro-
jection data with list-mode acquisition, without a tremen-
dous increase in storage space. In bin-mode acquisition of
SPECT data the number of detector locations is predefined
and rarely exceeds 2562256 detector bins acquired over 120
angular steps. This means data will be grouped together
thereby loosing detailed information. For each bin i it is
possible to obtain the probability of the i-th outcome, given
an emission at the j-th voxel within the object. When the
number of possible detector bins is limited one can calcu-
late and store the entire transition matrix, giving the rela-
tionship between the object space and the detector space.
With this information the probability of detecting an emis-
sion from the j-th voxel can be calculated. To calculate the
maximum likelihood solution to this probabilistic problem,
iterative methods such as expectation maximization max-
imum likelihood (MLEM) [4][5] have been presented. In
list-mode the set of possible outcomes is so large that few
of the outcomes occur maximum more than once and most
of them never occur at all. In binned format this would
mean that most of the elements of the, very large, sino-
gram are zero. Therefore it is more efficient to acquire the
detected events in a list, together with their detection pa-
rameters such as detector location, gantry angle, energy,
time stamp, etc. Since it is no longer possible to store the
transition matrix, it will be necessary to calculate the prob-
abilities, used in the reconstruction algorithm, on the fly. In
our previous work this was done using a new approach: the
intermediate layer. In previous work we developed a list-
mode iterative reconstruction algorithm (LMIRA) [6] for
SPECT applied to two dimensional image reconstruction.
This reconstruction method used the geometric collimator
model to apply the resolution recovery in a single slice [7].
In this work we deploy a modification of the projector and
backprojector to fit the three dimensional reconstruction
problem. First we will explain the transition of the cal-
culation of the emission radiance distribution from 2D to
3D. Secondly we detail the sampling of the obtained ra-
diance distribution with the three dimensional collimator
structure will be described. Finally we will present the 3D
list-mode reconstruction algorithm.
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Fig. 1. Forward projection of the source distribution onto the inter-
mediate layer.

II. METHOD
A. 3D emission radiance distribution

In 2D list-mode reconstruction a circular enclosure was
used surrounding the object, called the intermediate layer.
For the 3D problem, using for example a parallel hole or
a fan beam collimator, a cylindrical enclosure will be best
suited. For the imaging of small object with a pinhole or
a cone beam collimator it may be that a sphere is more
appropriate for this specific problem. In this work we dis-
cuss the case of a parallel hole collimator and thus use a
cylindrical intermediate layer.

To calculate the radiance distribution on the intermedi-
ate layer an isotropic emission is generated at each point
in the source distribution. For an isotropic emission gen-
erated at point P(r, ¢, z) the contribution to the radiance
in each point on the cylinder has to be calculated. For
the location S(1), z) on the cylinder, the emission from the
source element P will be given by the vector Fp(1, 2,0, k)
(image 1). To obtain the radiance distribution from P at
S one can use the known expression:

S

Fp(¢,2,0,k) = Ep.exp (—/ w(r, U, 2).ds), (1)

P
With Ep the value of the source distribution at P, and
w(r, ¥, z) the continuous attenuation coefficient distribu-
tion. The total emission radiance distribution F(v, z, 0, &)
in point S can be calculated by integration of the function
F over the line through the object defined by S, 8 and k.
In the expression the parameters ¥ and z indicate the
location on the cylinder face. The parameters @ is the angle
of the projection of F' on the trans-axial slice through the
source point P relative to horizontal x-axis and x is the
angle, obtianed when projection F' in the plane given by
the axial line (z-axis) through the location point S and the
normal vector N in S, relative to N. These parameters

S(¢.2) X

Fig. 2. Parameterizing the direction of the escape vector F.

give the direction of the escape vector F. To incorporate
the detector response in the z direction we will need the
additional parameter x (image 2).

When projecting the source distribution to the interme-
diate layer it is possible to build in the following restriction.
In the axial direction the projection can be limited by the
known geometric parameters of the collimator. Since pho-
tons leaving the intermediate layer, with an angle x greater
than the acceptance angle of the collimator, will never be
acceptable by the collimator holes, there is no need to cal-
culate the projection beyond this point. In this way the
axial projection can be restricted. The angle 6 can not
be restricted since the detector is rotating in this direc-
tion. Image 3 shows the emission radiance distribution for
a point source. The right image is the surface plot of the
left image. The top image is the complete distribution and
the bottom image is the restricted radiance for a High Res-
olution parallel Hole (HR) Marconi collimator.

Z-axis

o

Fig. 3. Emission radiance distribution for a point source out of center.
Top: complete radiance distribution. Bottom: radiance distribution
restricted by the collimator axial acceptance angle.

B. Sampling the radiance distribution with a collimated de-
tector

Consider data acquired from an object into list-mode in-
formation with the following parameters: axial location of
incidence a, trans-axial location ¢ and gantry angle §. The
collimator discussed primarily in this paper is a parallel



hole collimator. For each single list-mode event n in the
reconstruction we place a collimator hole over the center of
the detector location (a,t). From the bottom area of the
collimator hole towards the intermediate layer, (i.e. the
cylinder shown in figure 1), we will see a fraction of the
cylinder. Lines drawn from the outermost parts of the col-
limator hole, over the edges of the collimator septa, to the
cylinder restrict the solid angle seen (figure 3).

Fig. 4. Backprojection of the cone from a collimator hole through
the cylinder.

When we consider the intersection of the cone coming
from the collimator hole and the cylinder face, all elements
on the cylinder with possible contribution of the radiance
to this specific list-mode event are selected, these elements
are called scanning points. In every scanning point the
emission radiance distribution is parameterized by the an-
gles 8 and k. The face of the cone will put restrictions
on these angles since the vector of the escaping radiance
has to lay within the cone (image 5). In a first step one
has to obtain the area on the cylinder face which is the in-
tersection of the cone and the cylinder. Secondly for each
scanning point in this area the restriction on 6 and k have
to be applied. This will give the four dimensional region
An (1/)7 2, 07 K)

When we integrate the emission radiance distribution
F(¢,z2,0,k) over the region A, (¢, 2,0, k), we get the con-
tribution of the emitted photons from the total source dis-
tribution into the specific detector location during projec-
tion. In the backprojection step, A, defines the region of
the object into which the counts in the detector bin will
be backprojected and therefor will depict how the detected
photons, for a specific detector location, will contribute to
the backprojected image. It is also possible to use an ex-
pression for the geometric point response in terms of the
autocorrelation of the collimator aperture function for one
collimator hole [8]. This operator can be used to calculate
the individual voxel contributions. When we do not want

Fig. 5. Selection of the vectors from the emission radiance distribu-
tion in the acceptance cone.

to model the effects of attenuation and scatter in the back-
projection, but only the distance dependent resolution, we
can use the basic collimator aperture function. The effect
of the mismatched projector/backprojector pair has to be
investigated [9].

C. List-mode reconstruction

Consider a data set of N list-mode events with attributes
being the coordinates, gantry angle, energy level, etc. If
we want to use the ML algorithm we need to calculate
Pi(l,),forn=1,2,..,Nandj = 1,2,...,J , the probability
density that an item [,, would occur in the list, given there
was an emission of a photon in the j-th voxel.

A list-mode maximum-likelihood reconstruction algo-
rithm for PET was previously developed by Parra et. al.
[10], [11]

N (k)
1 P(l,|7).x;
x(k+1) _ ( |J) g 2)

. . —
’ N n=1 Zj:l P(ln|]>8j.fl')§ )

(k)
J
emitted from source bin j per unit of time for the k" it-
eration, and s; is the sensitivity for that source bin. N is
the number of list-mode events. J is the number of source
bins.

The nominator in the summation over the list-mode
events N is probability density given above. This can be
seen as the probability that an emission in voxel j will lead
to the detection of the list-mode event [,,. The denominator
is the total over all voxel of the probability density func-
tions given the detection of event /,,. When we look at the
radiance distribution this will give the probability density
functions of photons coming from the source distribution,
leaving the intermediate layer in a specific direction. In the
previous section we discussed how to restrict the area on
the intermediate layer for a given list-mode event. Doing

In this equation x; "’ is the expected number of photons



this we can obtain the contribution of the radiance distrib-
ution to a specific event. This is equal to the denominator
in equation. The nominator can be calculated from the
radiance for a singe voxel or by using the collimator aper-
ture function. Therefore, the equation can be rewritten as
follows:

(k)
Y(k;+1) o fAn Fj (¢7 Zy 07’%)

" B §An F(k)(¢,z797"$)

(3)

where A, is the list-mode specific acceptance area. Fj(k)

is the radiance distribution for voxel j for the k*" estimate,
and F(*) is the total radiance distribution for the k" source
estimate. Since one list-mode event is the detection of a
single photon, the backprojected value is normalized to 1.

(k+1)
(k+1) _ Y;n (4)
jn - ZJ 1Y,(k+1)
J=1"Jn
N
k+1 k+1
URRED I (5)
n=1

The algorithm updates the estimate of the source dis-
tribution for each list-mode event and sums the individual
results to the final new estimate for the source distribution.
In this way the integrals can be calculated on the fly and
do not have to be stored. The reconstruction start from
a uniform source distribution to calculate the primary ra-
diance. After a run through the list-mode data set, the
emission radiance distribution is recalculated and used in
the next iteration.

III. RESULTS

Preliminary test of the reconstruction algorithm were
performed on a simple three dimensional Gaussian distrib-
uted sphere with FWHM of a central cross section equal
to 12.5 mm, placed in the center of a 32 cube matrix with
voxel size 3,125 mm. List-mode information for this ob-
ject was derived from Monte-Carlo simulation, where the
data was acquired in projections of 512x512 detector bins
over 360 angles. A high-resolution parallel-hole collimator
was specified, with hole size 1.4 mm, length 27 mm and
radius of rotation equal to 112 mm. This results in the
maximum diameter of the backprojected cone being 14.4
mm or less than 5 voxels. The initial emission radiance
distribution was derived from a uniform cylinder with ra-
dius 10 cm within the 32x32x32 matrix. As with the 2D
LMIRA, the three dimensional reconstruction is resolving
the object over the different iterations. Further study is
needed to optimize the reconstruction procedure.

IV. DISCUSSION AND CONCLUSION

In this study we propose an extention of the 2D list-
mode reconstruction towards fully three dimensional image
reconstruction. Calculating the emission radiance distrib-
ution it is possible to incorporate the effects of attenuation
and scatter. This is can be done by using ray-tracing as

implemented in the 2D LMIRA. A different approach could
be using a model based deformation of the radiance based
on the attenuation and electron density maps. The cal-
culation of the 4D radiance function is a computational
intensive task. In our approach this calculation has to be
done once every iteration. The calculation of the intersec-
tion of the cone coming from the collimator hole and the
cylinder could be used more efficiently to define the voxel
within the object which can possibly contribute to the list-
mode event. In that way the number of voxel which have
to be taken into account in the reconstruction of a single
event can be reduced significantly.
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ABSTRACT to the local content of the image. A CAMM provides an
efficient representation of the image in that the number of
parameters (i.e., mesh nodes) is typically much less than
the number of required pixels/voxels. In addition, a mesh
model can also be used for motion tracking in an image
sequence, by allowing the mesh to deform over time [7].
The potential benefits of using a CAMM for image
‘reconstruction are: 1) a CAMM greatly reduces the
number of unknowns, thus alleviating both the
underdetermined nature of the reconstruction problem and
the data storage requirement, particularly for the case of
3D reconstruction; 2) this reduction in the number of
resulting in efficient algorithms. The proposed methods unkn_owns can lead to a fast_ computation; 3) a CAMM
' provides a natural spatially-adaptive smoothness

are tested using gated cardiac-perfusion images. Ir!mal mechanism, eliminating the need for regularization terms
results demonstrate that the proposed approach achleve§n the cost function; and 4) the CAMM provides a natural

the best performance when compared to several X Lk
P . P . framework for reconstruction of moving image sequences.
commonly used methods for image reconstruction, and

produces results very rapidly.

In this paper we propose the use of a content-adaptive
mesh model (CAMM) for tomographic image

reconstruction. In the proposed framework, the image to
be reconstructed is first modeled by an efficient mesh
representation. The image is then obtained through
estimation of the nodal values from the measured data
The use of a CAMM can greatly alleviate the ill-posed
nature of the reconstruction problem, thereby leading to
improved quality in the reconstructed images. In addition,
it reduces the data storage requirement, particularly for
fully three-dimensional (3D) image reconstruction,

2. METHODS

2.1 Mesh Tomography Model

1. INTRODUCTION Let f(x) denote the image function defined over a domain

D, which can be either 2D or 3D in this study. In a mesh

A great many methods have been developed forp, 4o b is partitioned intoM non-overlapping mesh
reconstructing tomographic images. Most of these

methods are based on pixel (or voxel) image elements, denoted by D, m= 12, M, The image

representations. Bayesian priors  (e.g., [1]) or function is represented as

regularization terms (e.g., [2]) are typically used to N

combat the effect of noise. f(x) =3 ¢,.001(x,), 1)
Alternative model-based reconstruction approaches n=t

have also been proposed. For example, cylindrical modelsvhere x,is thenth mesh nodeg¢ ,(x) is the interpolation

were proposed in [3] and surface models were used inbasis function associated witk,, and N is the total

[4.5]. _ number of mesh nodes used. Note that the support of each
In this work we propose a new content-adaptive meshpasis functiong, (x) is limited to those element®_,

modeling approach for image reconstruction.  In this p4acheq to the node. In practice, mesh elements with

approaqh, a customized basis representgtion Is compute imple geometry such as 2D triangular or 3D tetrahedral
for the image, then the parameters of this representation, | ments are often used

are estimated from the d_ata. o . _ Now let n denote a vector formed by the nodal values
In a mesh model, the image domain is subdivided into a ;
. ; : of the mesh model, i.e.,
collection of mesh elements, the vertices of which are
called nodes The image function is then obtained over n E[f(xl)1 f(x,),- f(x )]T 2)
each element by interpolation from the values of these "
nodes [6]. In a content-adaptive mesh model (CAMM), If f denotes the voxel representation of the image function
the mesh elements are placed in a fashion that is adapted(x) over D, then from (1) and (2) one can obtain

! This research was supported by the Whitaker Foundation and by the National Institutes of Health under grant HL65425.



f=on, 3)

where @ is a matrix, composed from the interpolation
functions ¢,(x) in (1), that forms the interpolation
operator from a mesh
representation.

For tomographic image reconstruction, the imaging
equation is typically written in terms of the voxel
representatior as

E[q] = Hf, (4)

where g contains the measured dat&[[l is the
expectation operator, and is a matrix describing the
imaging system.
Substituting (3) into (4), we obtain the mesh-domain
imaging equation:
E[g] = H®n = An,

whereA =H®.

®)

representation to the pixel

wherel[[] is the Euclidean norm. This quadratic objective
function has a unique solution, provided tiatis of full
rank. In this study, we used the conjugate gradient
algorithm [9] to perform the optimization. We refer to this
reconstruction algorithm as MESH-LS.

3. RESULTS

A. Evaluation Data

The proposed CAMM-based reconstruction algorithms
were tested using the 4D gated mathematical cardiac-torso
gMCAT D1.01 phantom [10], which is a time sequence of
16 3-D images. The field of view was 36 cm; the pixel
size was 5.625mm. Poisson noise, at a level of 4 million
total counts per 3D time-frame image, was introduced into
the projections to simulate a clinicdlc™" study. To
validate the concept of our proposed new approach, in our
initial study a single slice (No.70) was chosen, which has
approximately 55,000 counts per frame and a total of 16
frames. No attenuation correction was used. Each image

The reconstruction problem becomes that of estimatingframe was reconstructed separately, and a single mesh

n from the given datag. The imagef can then be
obtained from (3).

2.2 Reconstruction Algorithms

In this paper we investigate maximum-likelihood and
least-squares estimates of the nodal values in

A. Maximum-Likelihood Estimate

The maximum-likelihood (ML) estimate is obtained as
Ay, =argmax{ logp (g n)g, 6)

where p(g;n) the likelihood function of g

parameterized bw. In this paper, we assume a Poisson
likelihood, which characterizes emission tomography

The ML estimate can be computed by using the
following expectation-maximization (EM) algorithm [8]:

is

C
U

. 0
n(j+1) - n(sj) ZA O J: _ (7)
) ZAIS t tS@ZAtm(kj)
T

where n¥ is the value of nods in iterationj, g, is the

recorded count for observatienandA . is thets entry of

matrix A. We refer to this algorithm throughout as
MESH-EM.

B. Least-Squares Estimate

The least-squares estimate is obtained as the solution
the following optimization problem:

i =arg rrn1in||g - An||2 , (8)

structure was used for all frames.
B. Reconstruction Methods Considered

In addition to the two proposed reconstruction
algorithms, we also considered three well-known
reconstruction procedures for comparison purposes: (1)
filtered back projection (FBP); (2) pixel-based ML-EM
reconstruction [8] with spatial post-filtering; and (3) a
pixel-based MAP method with a spatial Gibbs prior
[1,11].

The coefficients used for the spatial Gibbs prior are
a=1,5=12,06=3, y=0.35[11]. For the spatial post-
filtering a 2D Butterworth spatial filter with a cutoff
frequency of 0.2 cycles/pixel was used. For consistency in
the comparison, the same post-filtering was also applied to
MESH-EM and MESH-LS methods in the final results.
Each of the iterative reconstruction algorithms was run for
30 iterations.

C. Mesh generation

The mesh structure was estimated from the projection
data using the following procedure. First, the projection
data were summed over the 16 frames. From these
summed projections an image was reconstructed using
FBP. The resulting image, denoted thyx), provides a
rough estimate of the heart summed over all 16 frames.

Based onf(x), we generated a mesh structure using a
procedure similar to the one we proposed in [12]. In that
paper we proposed a very fast and effective method for
mesh generation, in which error-diffusion halftoning of a

Ogradient—magnitude image is used to generate mesh nodes
whose spatial density is proportional to the local rate of

intensity change in the image.



The method reported in [12] was presented aadalmoc In Figure 3 we show the peak-signal-to-noise ratio
approach, but we have since derived a theoretical basis fo(PSNR) versus the frame number. [Fable 1 we
this concept, which shows that the correct image to use irsummarize the execution time, memory requirement and

place of the gradient magnitude is the following: PSNR averaged over all frames for various algorithms.
- - , = According to all of these criteria the MESH-EM algorithm
9(x) = max{ |72, F ()| 0%, F 0| O yyf(x)|)' 9) exhibits the best performance.

. ) We also tested the proposed methods using a much
From this image, we compute a feature map as follows:  coarser mesh structure (only 353 nodes). In this case, the

79()()0.475 « O Heart region speed of MESH-EM is further improved (reduced from
o'(x):{ 005 glon (10) 4.5 seconds to 3.9 seconds in runtime), but the image
d(x) x OBackground quality is almost preserved (average PSNR reduced from

27.4 dB to 26.9 dB, which is still better than that of the
other methods in Table 1).

A final note is that the MESH-EM algorithm can be
further accelerated using an ordered-subsets framework

map [12] by error-diffusion halftoning, from which the e[13,14]. Preliminary results indicated that our mesh based
megh struct)l/Jre is obtained by Delaunga{y triangulation (Seeordered-subsets EM algorithm is about 4 times faster
Figure 1). A total of 609 mesh nodes are used in the mesﬁNhen compared to a voxel-based ordered-subsets EM

g algorithm [14]. We plan to furnish detailed, complete
shown in Figure 1, only about one-seventh the number of : :
. ) results of these comparisons by the time of the conference.
pixels. Note that the algorithm places mesh nodes densely

in the important heart regions, and sparsely in the
background. This mesh was used as a basis on which to 5. REFERENCES
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Figure 2. From left to right in top row: Original phantom, Filtered-backprojection reconstruction, ML-EM reconstruction. Bottom
row: MAP reconstruction, MESH-LS reconstruction, and MESH-EM reconstruction.
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Figure 3. PSNR vs. frame number for various
reconstruction methods.



Segmented Multiple Plane Reconstruction - A
Novel Approximate Reconstruction Scheme for
Multislice Spiral CT

Karl Stierstorfer®, Thomas Flohr, Herbert Bruder

Abstract—A new reconstruction scheme for multirow spiral
CT is described and results are presented. The spiral path is
decomposed into small, overlapping segments which are used
for a separate convolution and backprojection yielding a stack
of segment images which contain only data of a partial scan.
These segment image stacks are, in a second step, reformatted
to the requested planes. In a third step, the reformatted
segment images are added to obtain full images.

The main benefit of the proposed algorithm is the superior
image quality. The limit of the algorithm has not been probed;
a 64-row dataset with pitch 80 has been reconstructed with
excellent image quality.

Index Terms—Approximate reconstruction, cone artifact,
spiral CT, multislice CT.

I. INTRODUCTION

A. Basic idea

Lately, a new class of reconstruction algorithms has
emerged which further extend the domain of approximative
reconstruction for multislice spiral CT.

The underlying idea is the following simple observation: if
it was possible to find an image plane so that the focus does
not leave this plane during a half turn of the spiral, we
would be able to choose (or interpolate), for each
projection angle and each fan parameter, rays that are fully
contained in the image plane. A simple 2D reconstruction
of these rays would yield an exact reconstruction of this
image plane. Of course, we know that this is impossible for
a spiral scan path, but it turned out fruitful to take this idea
as a starting point for approximations. All of the algorithms
described shortly in the following are based on thisidea.

B. Advanced Single Slice Rebinning (ASSR)

The Advanced Single Slice Rebinning (ASSR) reconstruc-

tion method, ([1]-[3]) tries to match image planes directly

to a @ segment of a spiral path. Kachelrie3 et al. reconstruct
these images from overlappimgintervals and reformat the
tited images to axial planes in a second step. The images
are reconstructed from overlapping scan intervals dthe
main drawback of the ASSR algorithm lies in the fact that it
is useful only for the maximum pitch (approximately 1.4
times the number of rows for typical CT scanners) or,

2 All authors are with Siemens Medical Solutions Group, D-91301
Forchheim, Germany. E-Mail: karl.stierstorfer@med.siemens.de.

alternatively, requires severe detector masking by software
for lower pitch values resulting in poor dose usage. Even at
the optimum pitch, the dose usage is only 70 %. Another
drawback of ASSR is that the average distance of the focal
spot from the tilted image plane - which is a measure of the
quality of the approximation to the basic idea described in
section A - increases with pitch, hence degrading image
quality.

C. Adaptive Multiple Plane Reconstruction (AMPR)

The Adaptive Multiple Plane Reconstruction (AMPR)
scheme [4] solves the pitch restriction problem of the ASSR
by introducing a second tilt angle, with a tangent to the
spiral as the hinge line. By reconstructing, for each of the
overlapping reconstruction intervals, several images,
rotated by different angles around this hinge, a much larger
fraction of the dose can be used.

D. Segmented Multiple Plane Reconstruction (SMPR)

The Segmented Multiple Plane Reconstruction (SMPR)
algorithm presented here goes one step further: it uses only
a small segment (typically less than one eighth of a full
turn) of the spiral to reconstruct booklet (stack) of
segment image pages. Since the segments are small, the
pages of a booklet can be matched almost perfectly to the
spiral path. Then, for all segments oftinterval, all book-

lets belonging to a segment and its complementary segment
in all rotations are reformatted to the desired (e.g. axial)
planes. In a last step, images from segmentsroingerval

are combined to a full image. Essentially, the steps of
reconstruction (convolution and backprojection) and z-
interpolation are interchanged with respect to conventional
multislice spiral algorithms.

In principle, the match of the pages to the spiral path will be
the better the shorter the segment is. For a 16-row scanner,
we found that eight segments are sufficient for good image
quality. The 64-row reconstructions were done with 32
segments.

Il. ALGORITHM

A. Segment images

The first step is the reconstruction of segment images. For
each of the segments, a fraction o, (N, is the
number of segments per rotation) of one rotation (plus some



overlapping to provide smooth transitions from one
segment to the next) is used to reconstruct a booklet of at
least N, (the number of detector rows) pages. For each
page, the rays closest to the image plane are selected for
convolution and 2D-backprojection. Hence, we obtain per
rotation a total of N,.,"N,,,., segment images. The segment
images are reconstructed with the finally desired field of
view. It can be shown that, by doing this, the information
available in the data is used almost perfectly if N, is suf-

Fig. 1. A typical segment image (N..,=32).

ficiently large. Figure 1 gives an impression of a typical
segment image.

B. Stack reformation

The next step is to reformat the pages of a segment and its
complementary segment from all rotations to the desired
(e.g. axial) image planes. This can be done in a pixelwise
fashion, in z direction only. In this step, the fina image
slice thickness can be adjusted by changing the width of the
weight function used for reformation.

The location of the segment pages is shown in Figure 2 for
the case of N,=N,..,=6. The pages contributing to one of
these reformatted segment images are shown in the same
shade.

C. Segment adding

Thefinal step isasimple adding of the reformatted segment
images of at least one half turn to a complete image.

I1l. TRANSITION TO FELDKAMP ALGORITHM

A theoretically interesting aspect of the SMPR approach is
that, by using smaller and smaller segments, we finally end
up with filtering and backprojecting only one (paralel)
projection at a time onto planes which are spanned by the
projection vectors of one detector row. Taking into account
the second step of reformatting to axial planesand the final

step of combining segments it becomes clear that this is
equivalent to a spiral version of the Feldkamp agorithm

Fig. 2. Demonstration of the spiral path together with some sample
booklets. Pages which are reformatted together are shown in the
same shade.

which involves a filtering parallel to the spira path fol-
lowed by a 3D backprojection. Hence, the SMPR agorithm
provides a smooth transition from an algorithm which utili-
zes a 2D-backprojection to a 3D-backprojection agorithm.
A byproduct of this consideration is that a canonica filter
direction for the filter step of the spiral Feldkamp recon-
struction is obtained.

IV. RESULTS

To test the agorithm we used the simulation program
DRASIM (Siemens Medical, Forchheim) to produce a test
data set of a thorax phantom (geometry definition by Katja
Sourbelle, FORBILD project) for a fan-beam scanner with
64x1mm rows and a pitch of 80. The data were reconstruc-
ted with the SMPR using N,,=32 (Figure 3) and, for
comparison, also with the AMPR algorithm (Figure 4).

The SMPR image is obviously amost free of artifacts
whereas the AMPR image exposes severe artifacts, particu-
larly near the strongly tilted ribs.

V. CONCLUSION

A substantially improved approximative reconstruction
algorithm for multislice spiral CT has been presented.
While the limits of the algorithm have not yet been probed,
results are excellent. A drawback of the agorithm is the
large amount of intermediate segment images which has to
be handled during the reformatting step.

From the theoretical point of view, an interesting aspect of
the agorithm is that it provides a smooth transition from a
2D reconstruction approach to a 3D Feldkamp-type spiral
algorithm.



Fig. 3. Typical axial image of a thorax phantom at pitch 80, reconstructed
with SMPR using 32 segments. The field of view is 400 mm; the display
window is 200 HU. Almost no artifacts are visible.

(1]
(2

(3]

[4]

Fig. 4. Axial image of a thorax phantom at pitch 80, reconstructed with
AMPR. The field of view is 400 mm; the display window is 200 HU;
same slice location as figure 3. Severe artifacts are visible, particularly
near the ribs.

b (1631

Fig. 5. MPRs of stacks of axial images, thorax phantom at pitch 80.
Top: reconstructed with SMPR using 32 segments, bottom: recon-
structed with AMPR. Display window 200 HU. Again, the SMPR
images are almost free of cone artifacts while severe artifacts are
visible in the AMPR image. The fine vertical streaks are spiral artifacts
which are independent of the type of reconstruction.

REFERENCES

G. L. Larson, C. C. Ruth, C. R. Crawford, US-Patent US5802134,
"Nutating slice CT image reconstruction apparatus’, 1998.

M. Kachelrie3, S. Schaller, W. A. Kalender, "Advanced Single-Slice
Rebinning in Cone-Beam Spiral CT", Med. Ph¥&,. pp. 754-772,
2000.

H. Bruder, M. Kachelrie3, S. Schaller, K. Stierstorfer, T. Flohr,
"Single-Slice Rebinning Reconstruction in Spiral Cone-Beam
Computed Tomography", IEEE Trans. Med. ImHYy.pp. 873-887,
2000.

S. Schaller, K. Stierstorfer, H. Bruder, M. Kachelrie3, and T. Flohr,
"Novel approximate approach for high-quality image reconstruction
in helical cone beam CT at arbitrary pitch", to be published in Proc.
SPIE Medical Imaging Conf. 4322, 2001.



A combination of rebinning and exact
reconstruction algorithms for helical
cone-beam CT

Michel Defrise, Frédéric Noo, Hiroyuki Kudo

INTRODUCTION

Cone-beam X-ray transmission computerized tomography (CB-
CT) has been applied to the non-destructive evaluation of
industrial samples, and a small number of prototype clinical
scanners have also been used for specific applications (cardiac
and vascular imaging), where fast imaging is an essential
requirement and only high contrast structures must be
visualized. The recent introduction of multi-row scanners now
allows a wide-spread utilization of CB-CT in radiology, and
the continuing development of large area x-ray detectors will
reinforce thistrend.

The acquisition of cone-beam projections allows faster
imaging than standard or spiral single-row CT, but presents
challenges for 3D image reconstruction. Despite significant
advances, the definition of a clinically acceptable, fast and
accurate, cone-beam reconstruction algorithm is still an open
problem, especially for the helical geometry where the x-ray
source moves along a segment of helix relative to the patient.
Accurate algorithms for helical CB-CT have been derived by
discretizing exact or quasi-exact analytical inversion formulae
for the 3D divergent-beam x-ray transform [4,7,8,12]. These
algorithms yield accurate reconstructions even when the ratio
between the pitch of the helix and the axial slice width exceeds
two orders of magnitude. Unfortunately, the numerical
complexity of these algorithms significantly increases the
reconstruction time and the discretization errors and affects the
resolution. These limitations of the exact algorithms motivate
an active research for approximate algorithms for helical CB-
CT.

In this paper we introduce a new quasi-exact algorithm for the
long-object problem in helical CB-CT, which combines a
rebinning method with the quasi-exact ZB method [4].

Rebinning algorithms are based on the factorization of the 3D
reconstruction into a set of independent 2D reconstructions.
This factorization can be viewed as a four-step procedure:
a) Selection of a number of 2D surfaces, called rebinning
surfaces, which partition the 3D field-of-view.
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F.N. iswith the Department of Radiology, University of Utah, Salt Lake
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H.K. is with the Department of Information Science and Electronics,
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b) Rebinning: estimation of a complete 2D tomographic
data set (sinogram) for each sdected surface using the
measured CB projections.

c) 2D reconstruction of each sdected surface from its
estimated sinogram.

d) Axial Interpolation: 1D interpolation of the
reconstructed surfaces to obtain the transaxial slices to be
visudized.

Several rebinning algorithms have been proposed, which differ
mainly by the type of surface for which rebinned 2D data are
estimated. These surfaces can be transaxia slices orthogonal to
the axis of the helix [SSRB, 10], tilted planar slices "tailored"
to the sope of the helix [9,14,1,3], or even non-planar
surfaces as in Heuscher [2] to further improve the possibility
to select rays lying as close as possible to the rebinning
surface. We present in the following section a unified
derivation of the various rebinning methods.

Rebinning algorithms only involve a 1D ramp filtering of the
data, and avoid the cone-beam backprojection. This numerical
simplicity results in less discretization errors than the exact
algorithms. The price to pay for this improvement is that
rebinning is approximate and introduces cone-beam artefacts
when the pitch of the helix becomes too large.

Therefore, the aim of this paper is to combine the best of the
two classes of algorithms: we propose to use a quasi-exact
algorithm, the ZB method, to correct a first image
recongtructed using a rebinning algorithm. The additive
correction is obtained by applying the ZB method to the
residual error, i.e. to the difference between the measured
projections and the cone-beam projections of the first image
estimate. This approach is motivated by the fact that the
discretization artefacts induced by the exact algorithm only
affect the correction image, and hence are expected to be
smaller than when the exact algorithm is applied directly to the
measured data.

The performance of the combined algorithm is evaluated using
synthetic data for mathematical phantoms and for data obtained
by reprojecting high resolution CT scans.



PLANAR AND NON-PLANAR REBINNING ALGORITHMS

The first contribution of this paper isto give a unified and
formal derivation of the various rebinning algorithms which
have been proposed in the litterature [1,2,3,9,10,14,15]. We
determine the mathematical properties, in particular the
symmetries, of the surface allowing the best rebinning, given
some reasonable quality figure. This surface is shown to be the
solution to an integral equation which can be solved by means
of an iterative algorithm. A proof of the convergence of this
algorithm and of the unicity of the optimal rebinning surface
is given. We also investigate how much can be gained by
rebinning onto non-planar surfaces as opposed to planes, and
concludethat rebinning onto planar surfaces is sufficiently
accurate as long as the radius of the field-of-view does not
exceed about half the radius of the helix (figure 1).

For the combined algorithm described in the next section, we
rebin on tilted planes, the orientation of which optimize the
mean square axial distance Q between the rebinning plane and
the measured rays used to build the corresponding 2D data set
[3]. We generate a short-scan fan-beam data set rather than a
parallel-beam data set, and the mean square axial distance Q is
calculated taking into account both the fan-beam redundancy
weight (Parker's weight) and the distance dependent weight in
the 2D fan-beam backprojection.

10

RMS axial deviation (mm)

0 100 200 300 400
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Figure 1. Root mean square axial distance (mm) between the
rebinning surface and the measured rays used to build the 2D
data set, versus the radius of the FOV (mm). Helix radius 400
mm. Pitch 100 mm. The 3 curves correspond from top to
bottom to: SSRB (rebinning on transaxial planes), optimal
tilted plane, optimal non-planar surface.

THE COMBINED ALGORITHM

We denote the unknown 3D image by fand the 3D X-ray
transform (the CB projector) by X. The dataare denoted as
g=Xf.

Recall first the steps of the ZB algorithm [see 4 for details]:

a) Weighted backprojection of the subset of cone-beam
dataglocated, in the detector, along the boundary of Tam's
window B. This backprojection operator is denoted X" and
isdefined so astoyield animage f, = X gthe cone-beam
projections of which, g, = X f;, are equal to the data
along the boundary of Tam' window: ¢, = gon JdB.
b) Reprojection: Calculation of the cone-beam projections
of the first image estimate f, and subtraction from the data
to get modified data g, = g- g . Notethat g, = Oon dB.
¢) Reconstruction of the modified data by

i) setting g, = Ooutside B,

ii) applying a 1D ramp filter along the direction
tangent to the helix,

iii) backprojecting as in Feldkamp's algorithm.
We denote this procedure as Fg o« [6] and the result as
f,= Ferok &
d) Addition of the two images after applying a smoothing
filter Sdesigned to match spatial resolutions: f = S f, +
f,.

The key to the quasi-exactness of the ZB method is the
property that X f; = g on dB. This property is satisfied by the
image f, = Xg'gconstructed in step a above, but this image
has no resemblance to the true image f, and therefore the
applied correction f, (and the associated discretization errors)
may be large.

In the combined algorithm proposed in this paper, we build an
alternativeimage f; which also satisfies X f; = gon dB but
isin addition a good approximation to f. Thisis done using a
rebinning algorithm (described in the previous section, and
denoted by F,):

a) Initial reconstruction by rebinning: f.y, = F.49d
b) Calculation of a first image estimate as
fl = XB*(g'X freb) + freb
where Xg* isthe weighted backprojection of the data along
0B, defined above.
The last three steps are as in the ZB method:
¢) Reprojection: calculation of the cone-beam projections
g = Xf; of thefirst image estimate, and subtraction
fromthedatas ¢, =g- g
d) Feldkamp's reconstruction: f, = Fgrox G
e f=Sf+f,

One easily checks that the property X f; = gon 0B is satisfied
exactly (within discretization errors) by the image

f, = Xg'(g- X f) + f.o usedin this combined algorithm.
This guarantees the quasi-exactness of the algorithm. The
advantage over ZB is that this f; image is a good
approximation of the original object, and therefore the
correction term f,, and the associated discretization errors, are

1 Tam'swindow B is the region bounded, in the detector, by the cone-
beam projection of the upper and lower turns of the helix [11,13].



smaller. The most time consuming steps in the combined
algorithm are the calculation of g, (step c) and the Feldkamp's

step (d).

For the results presented in the following section, we have
implemented a simplified version of the algorithm in which
we skip step b) and simply use f, = . instead of f, = X5 (-
X fe) + fo Thisapproximation is motivated by the fact
that the image f,,, obtained by rebinning may be aready
sufficiently accurate to guarantee that X f., = galong dB. A
comparison between the approximate and exact versions of the
combined method will be presented at the conference.

RESULTS

We have evaluated the performance of the combined algorithm
using simulated data for a head phantom similar to that used
by S. Schaller [5]. The phantom is contained in a sphere of
radius 100 mm. Data were simulated for a helical path with
1.5 turns and a pitch P=108 mm. The radius of the helix was
R=400 mm and there were 1200 vertices per helix turn. The
first and last vertices were at locations z=+81 mm. As defined,
the helix did not extend over the whole axial extent of the
phantom, and we are therefore dealing with a long object
problem.

Datawere simulated on avirtual rectangular detector located at
a distance D=400 mm from the cone vertex, i.e. a the
isocenter. The detector pixel size was 0.5 x 0.5 mm. There
were 400 channels and 200 detector rows.

The angle between the optimal rebinning tilted plane and the
transaxial plane was h=3.4 degrees, and the planar rebinning
algorithm used the central 134 rows of the detector (maximum
cone angle 4.8 degrees). The maximum distance between aray
used for rebinning and the corresponding tilted plane was 2.5
mm, to be compared with 7.8 mm with the SSRB method
(h=0). The difference between these two figuresillustrates the
benefit expected from the planar rebinning algorithms. For all
reconstructions, the ramp filter was apodized with a Hamming
window cut-off at the Nyquist frequency.

Figures 2, 3 and 4 show reconstructions on a grid of
400x400x200 cubic voxels of 0.5 mm, displayed with a gray
scalein therange[1.0,1.1]. The results illustrate the important
improvement in image quality obtained by rebinning on tilted
planesinstead of transaxial planes in SSRB [9,14,1,3]. A
reconstruction using optimal non-planar rebinning surfaces
(not shown) was practically identical to the reconstruction
using tilted planes, as could be expected from figure 1.

Theresultsin figures 2,3,4 also demonstrate that the artefacts
observed with the rebinning algorithm are largely suppressed
by the combined rebinning-ZB algorithm introduced in this
paper. These data also confirm that the short-scan helical
Feldkamp (FDK) agorithm (bottom right images) is not

superior to planar rebinning, even though FDK uses a "true"
cone-beam backprojection.

Figure 5 shows a comparison of the new combined algorithm
with the ZB method. Some improvement is observed,
especially in the longitudinal section where the streak artefacts
caused by the 4 disks are suppressed by the combined method.
On the other hand a new artefact is observed around the dark
ellipse in the transaxial section. Note that all these results
have been obtained with the simplified version of the
combined method, as described in the previous section.

A more detailed study using data obtained by reprojecting a
high resolution CT scan will be presented at the conference.
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Figure 2. Central longitudinal section x=0. Gray scale
[1.0,1.1]. Top left: SSRB, top right: planar rebinning, bottom
left: combined rebinning+ZB, bottom right: short-scan FDK.



Figure 3. Central transaxial section z=0. Gray scale[1.0,1.1].
Top left: SSRB, top right: planar rebinning, bottom left:
combined rebinning+ZB, bottom right: short-scan FDK.

Figure 4. Transaxial section z=19 mm. Gray scale [1.0,1.1].
Top left: SSRB, top right: planar rebinning, bottom left:
combined rebinning+ZB, bottom right: short-scan FDK.

Figure 5. Comparison between the combined method (left
column) and the ZB method (right column) for atransaxial
section z=19 mm and for alongitudinal section (x=0). Gray
scale[1.0,1.1].
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Abstract— The original Pl-method is a non-exact method for 3D-
reconstruction using cone-beam projections acquired from a helical
source trajectory. In the new PI-FAST method, our aim is to reduce
the artifacts while keeping the algorithmic simplicity. The detector is
still bounded by the Tam-window, which makes the data capture com-
plete and non-redundant. Also, the filtering step still consists of 1D
ramp-filtering but comprises the following novelty. Using the princi-
ples of fast backprojection we are able to do the backprojection in two
steps interleaved with by rampfiltering. This unusual order is shown
to be advantageous by exploiting frequency-distance coherence in pro-
jection data. The first backprojection step lumps together projection
data over shorter angular intervals along directions which correspond
to various velocities in projection space. By rampfiltering these data
instead of the original projection data we obtain less unwanted inter-
action in the z-direction of the volume and a substantial improvement
in image quality.

I. TWO-STEP FILTERED BACKPROJECTION USING LINKS

Filtered backprojection of 2D parallel data, p(8,t), can
be expressed as filtering with the ramp-filter g(¢)

ﬁ(a,t) :p(eat) *g(t) (1)
followed by backprojection

Ng—1

flz,y) =Y p(Bi,ycost; — zsinb;) )

=0

over a projection angle interval of length 6y, — 6y = 7.

It has been shown to be efficient to perform the backpro-
jection summation (2) recursively [1], [2] in log, Ny Steps.
In [3] the process is descibed as iterative summing of fil-
tered projection values along a sinusoid in the sinogram.
We will utilize a simplified version of this fast backpro-
jection technique that performs the calculations in two
steps. First, small intermediate summations along lin-
ear segments approximating the sinusoid are calculated
and stored. We call the linear segments links. In the sec-
ond step the values of the links are combined in build-
ing over 7 a sinusoid to yield the final result. The rea-
son for the computational gain is that the value of a link
will be used for several pixel values in the second step.
It should be noted, however, that this potential speedup is
not our main reason for using the two-step backprojection.
More interestingly we will show that we may postpone
the ramp filtering till the first step of the backprojection
has been performed.

Figure 1 shows an arbitrary link from (6;,,t4) to
(0is,tp) Where ip = ig + nand tg = t4 + d. The link
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Fig. 1. The link value is a summation of projection values along the link.

value I(6;,,t4,d) is calculated as

~ ia+n—1
16, ta,d) = > pl0ita+d

i=ia

t—1iA

) 3)

n

The tilde on I indicates that the link value is a summa-
tion of filtered projection data. Although the end points
(0;,,ta) and (0;,,tp) preferably are choosen as sample
points in the sinogram, the intermediate values along the
link require an implicit 1D-interpolation each in (3). The
link length 7 is constant in the algorithm. It has to be short
enough for the line elements not to deviate significantly
from the true curved sinusoid. A reasonable choice [3] is

The endpoints of a link corresponds to a ray each in
the image domain. The intersection (z,y) of the two rays
(eiA ) tA) and (HiB ) tB) is given by

(a:) B <_ sinf;, cos 0) - (tA> @
y) \—sinf;, cosb;, tg

A pixel value is computed by summing the values of the
links that build up the sinusoid of the pixel. See Figure 2.
For each step [ along the #-axis, we use values of the four
links surrounding the sinusoid segment to interpolate the
contribution to the pixel value. For notational simplicity

we denote the four link-values J;, K;, L;, and M;. The
pixel value is obtained as

Ng/n
) =3 (o (wia i+ (1= wi) K ) +
=1

(1 —wy) (wH_lle +(1- wz+1)Ml)) (5)
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Fig. 2. A pixel value is the sum of interpolations between groups of four
links.

where the interpolation weights w; depend on the t-
distance between the sinusoid and the link starting point.

By combining equations (1) and (3), the link value can
be written as

ia+n—1 . .
~ =14
1 1A 3 = i - =
Ot = 3 (p0uta a0 g0
ia+n—1 Z—ZA
( Z p(eiatA"'d n )) *g(t) = I(eiAﬂtAad)*g(t)
1=1i4

(6)

where I(6;,,t4,d) naturally denotes the link value calcu-
lated from unfiltered projection data. The change of or-
der between summation and convolution is possible since
the links are linear and equidistantly spaced along the ¢-
axis. Equation (6) tells us that we may indeed switch the
order between rampfiltering and the first backprojection
step, the link computation. The right hand side convo-
lution should be seen as a one-dimensional convolution
along the t-axis where all links of constant 6;, and d par-
ticipate in one filtering event.

Il. THE ORIGINAL PI-METHOD

The original Pl-method [4] is an approximate recon-
struction method for the helical cone-beam geometry in
Figure 3. The source moves along a helical trajectory of
radius R and pitch P around the z-axis. We define the
pitch as the distance, measured in an arbitrary length unit,
between two consecutive turns of the helix. The effective
area of the 2D detector is limited in height to a beam win-
dow between two consecutive turns of the source helix.
See Figure 3(b). The physical construction and geometry
of the detector may vary as long as all measurements are
confined to this window, the Pl-window. The cone-beam
projections p© (3, s) and the corresponding rays inside
the Pl-window are parameterized so that 3 is the projec-
tion angle, ~ is the fan-angle, and 2s is the detector height
coordinate on a detector wrapped onto the source trajec-
tory cylinder. The rows of this detector are aligned with
the curved helix. The top boundary of the Pl-window is

(c) %
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() %
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(a) 5
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Fig. 3. Geometry for helical cone-beam acquisition. (a) Example of focus-
centered detector. (b) A detector on the PI-window. (c) A pseudo-parallel
beam together with the planar virtual detector. (d) Nutating Pl-surfaces.

therefore at height s = P/4 and the bottom boundary at
s=—-P/4.

The first step of the PI-method is a re-sampling step
from cone-beams to pseudo-parallel beams according to

p(0,t,s) = pc(ﬂ,% s) = pc(ﬁ — arcsin }%, arcsin %, s) (7)

Note that the detector height coordinate s is left un-
changed. The re-sampling can thus be performed row-by-
row and is then identical to the well-known 2D procedure
known as parallel rebinning. We observe that the resulting
beam shown in Figure 3(c) is divergent when seen from
the side, but parallel when seen from along the rotation
axis. Also shown is a virtual planar detector orthogonal
to the projection direction placed on the rotation axis. The
pseudo parallel beam intersects this planar detector on a
perfectly Cartesian grid contained in a rectangle. The hor-
izontal rows of this detector have constant value of s.

The Pl-method then proceeds with a pre-weighting
with the cosine of the cone-angle for each ray. This is fol-
lowed by 1D ramp-filtering of data along the horisontal
lines of the virtual planar detector. The voxel values are
finally obtained by 3D backprojection of the filtered data.
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Fig. 4. Point on a Pl-surface of a helix of pitch P = 1 as projected onto
the planar virtual detector at different projection angles.

I11. APPROXIMATIONS IN SOME PREVIOUS HELICAL
CONE-BEAM ALGORITHMS

In order to track the inexactness of the PI-method, we
will now study the set of object points entering the rect-
angular window of the planar detector at the same time.
These points lie on a surface, which we will call a Pl-
surface. It can be shown that each object point belongs
to one and only one Pl-surface [5]. The complete set of
Pl-surfaces has a nutation around the rotation axis and
fills up the complete volume to be reconstructed. See Fig-
ure 3(d).

We assume that the projection system is rotating up-
wards in which case the points of a Pl-surface enter the
rectangular detector window on a perfect line on the up-
per boundary simultaneously. See Figure 4. As the ro-
tation of the projection system continues, the projection
of the Pl-surface moves downwards on the detector. Un-
fortunately, it starts immediately to deviate from the line
shape and occupies instead an elongated area with a non-
horizontal mid-line. However, after a rotation of exactly
180°, all points on the Pl-surface are again lined up hor-
izontally, now along the lower boundary of the window,
and exit the rectangular window simultaneously.

The algorithms found in [6], [7], [4] utilize the observa-
tion that the object points on nutating surfaces are concen-
trated along slanted lines in-between entrance and exit.
The 1D ramp-filtering in these algorithms is performed
along these slanted lines or curves. The filtered data is
then backprojected in two dimensions onto the nutating
surface or in three dimensions into the volume. The fact
that some of the object points on the nutating surface are
projected above such a slanted line and some below is not
handled in the filtering step of these algorithms, but will
be addressed by the new PI-FAST method.

Consider a neighbourhood of points on a Pl-surface.
They are projected onto a neighbourhood on the detector.
Furthermore, they have similar velocities in the ¢-direction
on the detector. Unfortunately, the projection values of
this detector neighbourhood are contaminated by object
points belonging to other Pl-surfaces. However, on the de-
tector, the projection of these contaminating points have

Fig. 5. The links needed for a Pl-surface of a helix of pitch P = 1. Note
that the number of links in both §- and ¢-direction is small compared to a
typical case to simplify the illustration. This makes the links sprawl out
in the s-direction more than in a typical case.

different velocities in the ¢-direction. Only links of the
same slope % have the same projected ¢-velocity [8]. By
not filtering links of different slopes together, PI-FAST
aims to decrease unwanted interaction between neigh-
bouring Pl-surfaces during the filtering event.

IV. THE PI-FAST RECONSTRUCTION METHOD

For each Pl-surface let us construct a complete set of
link values I(6,t,d). The links are positioned in the 3D
(8,1, s) projection space. The (6, t)-coordinates of the links
are identical to the 2D case since we may regard the re-
construction as 2D when seen from along the rotation axis.
The s-coordinates require some further analysis.

Given a Pl-surface and the values of 6;,, ta, 0;,, and tp
we use (4) to compute the (z,y)-coordinate of the point
on the Pl-surface corresponding to the link. Knowing
(z,y), the z-coordinate of the point is uniquely given by
the equation of the Pl-surface. The link endpoint coordi-
nates s4 and sp can then be calculated by projecting the
point (z,y, z) onto the virtual planar detector from pro-
jection angles 6;, and 6;,, respectively. Analytical expres-
sions of these geometry calculations are found in [9].

The complete set of links for a Pl-surface will approx-
imately follow the projection tracks of the points in the
Pl-surface from their movements in the projection space.
See Figure 5. At the entrance projection angle ;. of the PI-
surface, the links will all start at s = P/4 and at the final
projection angle 6;,, + = the links will all end at s = —P/4.
In-between these two angles, the links will spread out in
the s-direction.

When the end-points of the links have been calculated it
is possible to calculate each link value along the line seg-



ment between the link end point as

ta+n—1

I(6i,,ta,d) = p(0i,ta +d

i=ia

t—1A T—1%4A

) + -
- sa+ (sB—s4)
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The implicit 1D interpolation in the ¢-direction for the 2D
case in (3) has here become an implicit 2D interpolation
on each (¢,s)-plane. If we insert the re-sampling step in
(7) into (8), we may construct the link values directly from
the cone-beam data p“ (3,7, s) without the intermediate
re-sampling step in (7). There is furthermore no need to
initially re-sample the original cone-beam data to rows of
constant s since the mapping between the actual physical
detector sampling points and the (3, v, s)-system also can
be inserted into (8). The sampling points of the terms of
the summation in (8) will then not coincide with the pro-
jection data sampling points even in the projection angle
direction. An implicit 3D-interpolation is thus necessary
for each term in (8). To avoid aliasing, it may be necessary
to have a smaller step size in the summation along the 8-
direction than the sampling distance step used in (8).
Once the link values of a Pl-surface have been com-
puted they may be ramp-filtered as described in the right
hand side of (6). The filtered links are then combined into
pixel values according to (5). This backprojection step is
identical to the 2D case, but will nevertheless perform a
3D backprojection. It does not have to consider the link
positions in the s-direction, since this information is al-
ready taken care of in the first backprojection step in (8).
The pixels on the Pl-surfaces are finally interpolated onto
a suitable final 3D sampling grid, such as a cubic grid,
for presentation and analysis. Note that this interpolation
only is performed along the z-direction, since the pixels
on the Pl-surfaces already are positioned on a Cartesian
(z,y)-grid.
We summarize the computation steps in the PI-FAST al-
gorithm as

1:  Pre-weight the projection data with the cosine of the
cone-angle of each ray.
2. for all Pl-surfaces do
3: Compute the link values according to (8) using the
appropriate mappings to the acquisition geometry
of the original data.
Ramp-filter the link values as in (6).
Compute the pixel values of the Pl-surface using (5).
end for
Resample the pixels of the Pl-surfaces in the z-
direction onto a Cartesian grid.

N o g R

V. EXPERIMENTAL RESULTS

Figure 6 shows the reconstruction results of a phantom
consisting of homogeneous spheres. For comparison the
result of a so called multi-slice method with 2D backpro-
jection [10] found in present 4-row scanners is included.
Noise-free projection data was generated on a 64-row de-
tector with a fan-angle of +30° and cone-angle of +7.13°.
Further experiments and details are found in [9].

)

(a) Phantom

(c) PI-method, ¢ = 0.050

(d) PI-FAST, ¢ = 0.034

Fig. 6. Reconstruction results of the sphere clock phantom [9] together
with the root mean square error. Radius R = 2.0 length units, pitch
P = 1.0 length units, Ny = 256 projections per half turn, fan-angle
+30°, cone-angle +7.13° on a 64 row detector with 255 elements per
row. Slice reconstructed on 256 x 256 x 1 voxels of side —i= length unit.

128
Greyscale interval [—0.05, 0.05].
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Why do Patientsand Their Care-GiversNeed 3D and 4D Imaging?
ThomasF. Budinger M.D., Ph.D.

Imagine you finally decide to learn the status and prognosis of your lower back pain. From your MRI
study the local orthopedic or neuro-surgeon makes an 8 cm midline incision over your lower vertebrae.
While looking at the X-ray view-box in the operating room, as well as what can be seen of your spinal
cord and the disc after removing some bony bridges, the surgeon retracts your cord and chisels out part
or al of your disc. He then adds some shims or screws to help support your vertebrae. This scenario
could apply to cervical vertebrae or knee surgery. Having benefited from these repairs you later
encounter an episode of robotic surgery of your clogged coronaries, or ablind biopsy of your prostate
because your PSA is high or your breast because your mother has breast cancer and somebody saw
something suspicious on a mammaogram.

In al of these procedures few physicians would claim they had confidence that what they were able to
see, alowed them to do their best for you. In fact, most would complain that the lack of anatomical
landmarks and adequate surgical exposure limit diminished their effectiveness and therefore the safety
and efficacy of their procedures.

Therefore, how can fully 3D imaging scientists practically change the practice of medicine? The answer
liesin afew realistic examples from which one can extrapolate to many surgical and non-surgical
procedures that promise to improve the quality and effectiveness of medical care.

Now imagine the surgeon has made perhaps three 1 cm incisions in your back and through a stereo
projection system in the operating room, the surgeon can visualize your vertebrae in virtual reality from
apreviously obtained Spiral (helical) CT. The surgeon can also visualize the spatial position of the
operating instruments relative to the bony architecture of your spine. At hisoral command he can move
your virtual reality anatomy to improve viewpoints and can call on additional MRI or even SPECT or
PET bone blood flow information to aid in the surgical decisions. The surgeon’ s tools move around
unbroken bony bridges and the remodeling operation is nearly bloodless and nearly atraumatic. A
similar scenario can be portrayed for cardiac surgery.

In short, 3D imaging is a method of achieving surgical exposure without surgery. Why cannot this be
done by in-situ endoscopy without prior imaging? Because the 3D relations of awide field of view is
needed for safe and accurate surgery.

In addition to improved visualization of the spatial relationships, 3D data acquisition methods and
reconstruction methods enable the realization of entirely new areas of medical imaging. One exampleis
the recent discovery that multidetector helical CT can characterize coronary atheromawith clinically
useful diagnostic resolution. The breakthrough hereis adirect result of speed of volume coverage that
in effect negates motion-based blurring. The volume coverage provides adequate data acquisition
during a data collection sequence synchronized with the EKG window.



Other examples of 3D and 4D methods are dynamic MRI for studying the motion of bony joints and of
the heart. Of particular interest is our proposed method for evaluating the motion of the human vertebral
column. Even methods of in-vivo microscopy, as for example 50 mm resolution imaging, of the human
cortex require 4D acquisition methods and motion compensation algorithms. As shown in the
accompanying figures, the evolution of instruments continues to make demands on scientists who can
create algorithms to optimize the data collection from these new geometries. Examples of these
applications alert usto the importance for 4D algorithms that encompass the following applications:

. Motion compensation and motion imaging in SPECT and PET
. Kinetic parameter extraction in dynamic SPECT

. Tensor tomography

. Diffusion tensor imaging

. Cardiac motion parametric imaging

. Motion parametric imaging

. Shoe fit optimization by dynamic MRI.

Examples of current medical applications and horizons will be given in this presentation.
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Image Reconstruction Algorithm for a SPECT System with a
Convergent Rotating Slat Collimator

Gengsheng L. Zeng
University of Utah, Salt Lake City, UT 84108, USA
Daniel Gagnon
Marconi Medical Systems, Cleveland, OH 44143, USA

Abstract — In this paper we suggest the use of a Il. Methods
convergent rotating slat collimator in a SPECT system
that contains strip-shaped CdZnTe detectors. Thi%\

imaging device is able to provide high spatial and Projection data

energy resolution for small animal imaging. A novel A common feature of slat collimator is that the
design method and reconstruction technique ardneasured projection is a weighted planar integral rather
proposed for use in this system. than a line integral.

Let's first assume that the detector is infinitely
narrow. We have an approximate “point detector”
. between adjacent collimator slats. The planar integral
. Introduction that this point detector measures is weighted by a factor

A parallel, slat collimator shown in Figure 1 was of 1/r, wherer is the distance between the point
proposed in 1975 by Keyes [1]. This collimator can bedetector and the point-object.

mounted on a gamma camera for SPECT (single photon  f the detector is not narrow, we can treat it as rows
emission computed tomography) imaging. This of independent point detectors, each one having its own

collimator does not consist of holes. Instead, it is madeweighting factor ofL/r; . The integrated effect of each
of parallel plates. One advantage of a slat collimator !

over a hole collimator is its better geometric efficiency factor 1/r; vyields a distance dependent weighting
[4]-[7]. However, this slat collimator can only measure factor in the planar integral. The measured projection
a one-dimensional profile, and therefore cannot be usegalue is the sum of all measurements from a row of
to directly measure a two dimensional image. A planarindividual “point-detectors.” The goal behind this work

image can only be reconstructed using one-dimensiongl . develop a method to remove the. weighting
profiles. Three-dimensional imaging requires two '

motions: Collimator rotation and detector rotation as
illustrated in Figure 1.

The idea of using a rotating collimator was later
adopted in applications of semiconductor detectors
[2][3] and Nal(Tl) Anger cameras [4]-[7].

In this paper we propose using a convergent
rotating slat collimator for SPECT, and the development
of a reconstruction algorithm.

This research is directed towards building a small
animal SPECT imager with both high spatial resolution
and excellent energy resolution. CdZnTe semiconductor
chips have been used to build a gamma ray detector
[8][9]. The detector is strip-shaped, like the detector
depicted in Figure 1. However, the collimation slatsare ~__—
arranged so that they have a focal line in front of the
detector, as illustrated in Figure 2. This design enables
us to achieve a sub-millimeter spatial resolution. The Rotation 2:
distance between the focal line and the detector is
referred to as the collimator'®ocal length The focal
length will be determined by the object size. A smaller
object requires a shorter focal length.

factor from each “point-detector.”

. collimator rotation
Rotation 1:

detector rotatio

Figure 1. A Parallel rotating slat collimator



B. Introduction of a small tilt angle U}f(r’ o, rtand) r dr do _U;f(r, o, —r tand)r dr do
In order to remove thd/r,  weighting factor from = r J .

2%
the projection data, we modified the convergent slat )
collimator shown in Figure 2 by tilting every slat a small Equation (3) can also be expressed as:
angled, as indicated by the broken lines in Figure 3. 9(3) —g(-d)

20

(cosd) (4)

C. Algorithm _ J.}f(r,a,rtan6)—f(r,a,—rtan6)rdrda_

2%
Let us consider the local coordinate system shown

in Figure 4. This local coordinate system is centered aty, f(r, a, rtand) — f(r, a, —rtand)
an arbitrary “point-detector” which measures a 20

weighted planar integral of the plane label@dSince s readily recognized as an approximation of the partial
the collimator slats are tilted by a small angleafter the  yqrivative of f . with respect to variabl®, and
collimator rotates 180° (Rotation 1 in Figure 1), another
“point-detector” will be rotated to the location where the 1, it
previous “point-detector” was located. The new “point-
detector” measures a weighted planar integral of the
plane labeled'. If planea is tilted up by a small angle d r

0, then plan&’ is tilteddownby a small anglé. %r tand = 25" ®)

cos 0

portion of Eq. (4)

plied by a constantL2 , because
cos 0

The measurement at plaaés given as ) ) o
Using the local coordinate system presented in Figure 4,

1
9(d) = J‘_[ -f(r, o, rtand)rdr da (1)  and recognizing the fact that thés in r/cos’d and

o 1/r cancel out, we have:
and the measurement at plaxés given as

0 0
—f dda = —(ff drda (6
g(-o) :J’J’%f(r,a,—rtané)rdrda. (2 Iaw (r, o, wjrdr do OW_II (r, o, wyrdrda (6)
By subtracting Eq. (2) from Eq. (1) and multiplying the and
difference by a constarﬁtoszé)/ (20) , we have %g(_a)(coszé) @)
9(3) —9(9) .2
25 (cos'd) (3) =IJ‘%Vf(r,a,w)rdrda
— _‘\
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Figure 2. A convergent collimator. Figure 3. A convergent collimator with a small tilt-angle



- iﬂ-f(r, o, w)rdrda . wherex is a point in the 3D image space @hd s the
ow direction of the detector, which is the direction in
Figure 4. The angled is the angle of Rotation 1

Here, ((f(r,a,w)rdrda is the Radon transform of . = -
I.[ ( ) indicated in Figure 1 and = 0° corresponds to the

objectf. . . . .
position where® is parallel to the axis of Rotation 2.

. T = " “The anglep is determined by Rotation 2 and the starting
imagef by backprojecting the second-order derivativeangle is arbitrary. The Radon transform of the objést
of the Radon transform, i.e., by backprojecting denoted by, and
2
0 2
——((f(r,a,w)rdrda. w_ 0
GWZII p' = W‘Uf(r,a,w)rdrdcx. 9)

The reconstruction procedure is as follows:

The Radon inversion formula reconstructs the

i) Measure data at plaree see Eq. (1).
if) Rotate the collimator 180° and measure data at pland. Data sufficiency condition
a’, see Eq. (2). In order to guarantee a sufficient measurement of
iif) Take the difference of the above two measurementshe data, we require that every poit in the region-of-
and normalize it by a constamtoszé)/(ZE')) . See Interest should see a backprojected plane frabl

Eq. (7). [Note: This step could also be the very lastfientations.
Let us define théocal pointof the collimator to be

. : 2
step in the reconstruction, becau@®s 8)/(20)  iSyhe point directly in front of the detector center on the

a constant ] focal line. To obtain a sufficient data measurement, the
iv) Sort the data according to the detector orientationfocal point position must have a non-planar trajectory.
then store the data in the Radon space. Figure 5 illustrates two examples that can be used to

v) Take the derivative of the data along the radia@cqwreacomplete data set.

direction in the Radon space, obtaining the second-
order derivative of the Radon transform.

vi) Backproject the data according to the Radon [Il. Discussion

inversion formula: . .
In this paper we outlined the development of a

[ L , reconstruction method for SPECT imaging utilizing a
F(x) __zg_r(fo_[opetb(yz (B)sin6dBdd ®) convergent rotating slat collimator. The method
introduced a small tilt-angle for the slats and a

differential technique to remove ther Weighting factor

Figure 4. Local coordinate systems: The
cylindrical system (r,a,w) and the
Cartesian systenu, v, w)




in the projection data, which were then converted into7.
Radon data. The Radon inversion formula was used to
reconstruct the image. A data sufficiency condition for
this imaging geometry was also discussed.

8.
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Focal Point Trajectory

— Y, Figure 5. The focal point needs to be deviated from the central position in order to acquire
a complete data set for convergent collimation. Two exemplary scan trajectories are

/ shown on the right.



ImageReconstructiom 3D Short-ScarSPECT
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Abstract

Physical factors such as photon attenuation degrade
image quality and quantitatve accuray in single-photon
emissiorcomputedomography(SPECT) |t is oftenconsidered
(especially in situations with non-uniform attenuationand
distance-dependergpatial resolution (DDSR)) that adequate
compensatioffior the effectsof thesephysicalfactorsrequires
dataacquiredover 2x. However, asthe analysisin this work
suggestspne may needdataacquiredonly over = to correct
adequatelyfor the effects of some of the physical factors.
Reductiorof thescanninganglein SPECTimagingis desirable
becauset can reducethe scanningtime and thus minimize
patient-motionand other artifacts, and becausescansover
lessthan 27 can allow the detectorto be rotatedat a fixed
distancecloserto the patient. Also, in certaincases(e.g.,in
cardiacSPECT) onecanchoosehescanningangularangefor
obtaining maximum numbersof photons. This work focuses
oninvestigationof accuratémagereconstructiorin 3D SPECT
from datathatareacquiredwith parallel-beancollimationonly
over 7 andthatcontainthe effectsof photonattenuatior(either
uniform or non-uniform)and DDSR. For simplicity, we refer
to such a scanningconfigurationas 3D short-scanSPECT
This work may have significanttheoreticalaswell aspractical
implicationsfor imagereconstructionn SPECT

|. BACKGROUND

Single-photoremissioncomputedtomography(SPECT)is
an important nuclear medicine imaging modality. Physical
factorsin SPECT such as photon attenuationand imperfect
spatial resolution degrade image quality and quantitatie
accurag [1,2] andshouldbeadequatelgorrectedor. Because
these physical factors are generally spatially variant, it is
often consideredespeciallyin the situationwith non-uniform
attenuatioranddistance-dependespatialresolution(DDSR))
that adequatecompensatiorfor the effects of thesephysical
factorsrequiresdata measuredat projection anglesover 27.
However, as the analysisbelow suggestsjt appeargpossible
that (at leastundercertainconditions)dataacquiredonly over
m canbe usedfor adequatelyorrectingfor the effectsof some
physical factors such as photon attenuation. The reduction
of the scanninganglein SPECTimagingis desirablebecause
it can reduce scanningtime and thereby minimize patient-
motion and other artifacts. Also, in certain cases(e.g., in
cardiacSPECT),one can choosethe scanningangularrange
for obtainingmaximumnumbersof photons[3, 4]. This work
focuseson investigationof accurateimage reconstructionin
3D SPECT from data that are acquiredwith parallel-beam

collimation only over = andthat containthe effects of photon
attenuation(either uniform or non-uniform)and DDSR. For
simplicity, we referto sucha scanningconfigurationasthe 3D
short-scarSPECT

I[I. MATHEMATICAL RATIONALES

A. Redundant Information and Reduction of

Scanning Angle

In sometomographicimaging systems the datameasured
over 2w contain redundantinformation. One example is
measuremendf the 2D Radontransform[5], p(¢,¢), of a
real function over 2w, where¢ is the detectorbin index and
¢ is the measurementingle. Such measurementgontain
redundantinformation becausejn the absenceof noise and
otherinconsistencieshe measurementom conjugateviews
aremathematicallydentical,i.e.,

p(éa (ZS) :p(_£a¢+ﬂ')' 1)

It is well known that such information can be exploited for
reducingthescanninganglefrom 27 to = becauséhe maximum
difference between the values of the real angles on the two sides
of Eq. (1) ism.

In fan-beam computed tomography (CT), the quantity
q(t, B) is usedto denotethe measuredransmissiorata,where
t indicatesthe detectoibin index andg3 themeasuremerangle.
Although the fan-beammeasurementéexcept for thosewith
t = 0) from conjugateviews arenot mathematicallyidentical,
one can still shav that the fan-beamdata acquiredover 27
containsredundantnformation,i.e.,

q(t, B) = q(—t, B+ m + 2a(t)), )

wherea(t) is a known andreal function of ¢, andits explicit
form dependsiponthe detectorconfigurationg6, 7]. It canbe
shawvn thatmax{2a(t)} = 2a(tmaez), Wheret,,q, is apositve
finite numberand |t| < tma. IN Most practical situations,
20(tmaee) < w. Therefore,the maximum difference between
the values of the real angles on the two sides of Eq. (2) is
T + 2a(tmqz), Whichis lessthan 2z, It is well known that
suchredundantinformation can be exploited for reducingthe
scanninganglefrom 27 to 7 + 2a(tmaz ), Which is referredto
astheshort-scar{or half-scan¥an-beanCT [8, 9].

In diffraction tomography(DT) [10, 11], one can derive
a quantity M (v, ¢) from the measureddata at a particular
angleg, wherev canbeinterpretedasthe spatialfrequeny of
the measureddatafunction. It hasbeenshavn that M (v, ¢)
measuredat anglesover 27 containsredundantinformation
[12],i.e.,

M(v,¢) = M(—v,¢+ 7 + 2a(v)), 3)



wherea(v) is aknown andreal functionof v, andthe explicit
form of a(v) is determinedy the DT scanningconfigurations.
Also, it canbe shavn that max{2a(v)} = 2a(Vmes) < 7,
where v,,q, is a positive finite numberand |v| < Vmqq.
Therefore the maximum difference between the values of real
angleson the two sides of Eq. (3) ism+2a(Vmaz ), Whichis less
than2x. Again, suchredundantinformationhasbeenexploited
for reducingthe scanninganglefrom 27 to0 7 + 2a(Vpqz) IN
DT, whichis referredto asthe minimum-scarDT [13].

In summarythedataacquiredover 2 in sometomographic
imaging systemscontainredundaninformation, which canbe
exploited for reducingthe scanninganglesand/orto reduce
noisein thereconstructednage[12,14,15]. Theaboveanalysis
suggestshat,becausehe physicalscanninganglemustbereal,
the maximumscanninganglesaredeterminedy the maximum
differences between the values of the real angles on the two
sides of the equationsthatcharacterizéheconsistentonditions
of (or, equialently, the redundantinformation in) the data
functionsin theseimagingsystems.

B. Redundant Information and Possible Reduction of
Scanning Angle in SPECT

Now we consider3D SPECTwith parallelbeamprojection.
When the effects of photon attenuationand DDSR are
consideredfrom themeasuredataonecanobtaintheso-called
modifiedsinogramwhich canbe expressedeadilyas

m(&, ¢, 2) Z/dn o= Joan’ u(gd()+n' 0" (¢), 2)

x / de' d2' a(€' 0(6) +n6-(8), ') hE—€, z—sm), (4)

where¢ and z are the 2D detectorindices, a(x, y, ) is the
3D radioactvity-distribution function; é(q&) = (cos@,sing)

and61(¢) = (—sing, cosp) aretwo orthogonalunit vectors;
x =& cosgt sing; y = —& sing+ cose; u(x, y, z) is theknown

3D attenuatiorfunction; and (&, z; i) is the known distance-
dependenspatial resolutionfunction. The full-width-at-half-

maximum (FWHM) of the latter function is dependentf the
distancey. In this work, we considerh(¢, z; ) only asa shift-

invariantresolutionfunction. However, it canbe a generally
shift-variantresolutionfunction.

1) Possible reduction of scanning anglein SPECT with uniform
attenuation

Obviously, from inspectionof Eq. (4) it is unclearwhether
the data acquired over ¢ € [0,2w) contain redundant
information in 3D SPECT with the effects of non-uniform
attenuatiorandageneraDDSR.However, whenonly theeffect
of uniform attenuationis consideredthe modified sinogram
becomeghe 3D exponentialRadontransform(ERT) [16], and
we have demonstrategreviously thatthe 3D ERT acquiredat
¢ € [0, 2m) containredundantnformation,i.e.,

M (v, vz, @) :M(_Vmayz;¢+7r+¢l(ym))7 )

whereM (vp,, v, ¢) isthe2D Fouriertransformof themodified
sinogramm(¢, z, ¢) with respecto £ andz, andwhere¢’(v,,,)

is aknown andpurely imaginary functionof v,,,. We previously
developedalgorithmsthat exploit suchredundantinformation
for controlling noisein reconstructedSPECTimages[14, 15,
17].

Can suchredundantinformationin the ERT be exploited
for reductionof the scanningangle? The analysisin Sec.ll.A
suggeststhat, becausethe physical scanningangle must be
real, the maximumscanningangleis the maximum difference
between the values of real portions of the angles on the two
sides of the equations (e.g., seeEgs. (1-3) that characterize
the redundantinformation.) In Eq. (5) of the ERT case,
because)’ (v,,,) is purelyimaginary, we speculatehatit may
have no impacton the determinatiorof the maximumphysical
scanningangle, which must be real, and thus that the ERT
acquiredonly over ¢ € [0,m) can be usedfor accurately
reconstructingimagesin SPECT with uniform attenuation.
Our numerical studiespresentecbelon seemto supportour
hypothesistrongly

Furthermore, for SPECT with uniform attenuationand
certainDDSR functionssuchasthe Cauchyfunction [18,19],
one can shov that the 2D Fourier transformof the modified
sinogransatisfiesEq. (4). In thissituation,¢’ (v,,,, v,) becomes
afunctionof v,,, andv, . However, mostimportantly, ¢' (v, v,)
remainspurely imaginary. Therefore the maximum difference
between the values of the real angles on the two sides of Eq. (5)
remains to be w. This obsenation leadsus to speculatethat
accuratémagesmay be reconstructedrom dataacquiredover
m in SPECTwith uniform attenuationand DDSR of certain
forms. We investigatedtheoreticallyas well as numerically
the image reconstructionfrom data acquired from only =
in SPECTwith uniform attenuationand DDSR. Indeed, our
numerical investigation belov suggeststhat the quality of
imagesreconstructedrom dataacquiredover 7« appearto be
comparabldo that of imagesreconstructedrom dataacquired
over 2.

2) Possible reduction of scanning angle in SPECT with non-
uniform attenuation

So far, it hasbeengenerallybelieved that one needsdata
over 27 for accurateimage reconstructionin SPECT with
non-uniformattenuation. However, the seeminglypromising
numerical results belon obtainedfor SPECT with uniform
attenuationleads naturally to the question: Can accurate
imagesbe reconstructedrom the dataacquiredonly over 7
in SPECT with non-uniform attenuation? In an attemptto
answetthis questionwe are currentlyconductinga theoretical
investigation, which appearsto be an exceedingly difficult
task despitethe fact that an analytic solution has recently
been derived for full-scan SPECT with the effect of non-
uniform attenuation[20, 21]. On the other hand, we also
conductednumerical researchon image reconstructionfrom
dataacquiredover 7 in SPECTwith non-uniformattenuation.
Thesenumericalresults,which arepresentedn Sec.lll below,
indicate(atleastfor thecaseghatwe studied)thatthe quality of
imagesreconstructedrom dataacquiredover 7 is comparable
to thatof imagesreconstructedrom the dataacquiredover 27
in SPECTwhenattenuatioris non-uniform.



We investigatechumericallythe imagereconstructiorfrom
dataacquiredonly at ¢ € [0,7) in short-scanSPECTwith
the effectsof both non-uniformattenuatiorandDDSR. Again,
the resultsof thesenumericalstudies,as shavn belov, seem
to suggesthat the quality of imagesreconstructedrom data
acquiredover m appearto be comparableto that of images
reconstructedrom dataacquiredover 2.

3) Reconstruction Algorithm

Although we speculatethat one may need data acquired
only over ¢ € [0,w) for accurateimage reconstructionin
short-scanSPECT it remainsunclearwhether“closed-form”
algorithmscan be derived to accomplishsuchreconstruction
tasks. On the otherhand,one may useiterative algorithmsto
reconstructimages(i.e., to obtain solutionsa(7) in Eqg. (4))
from knowledge of the data m(¢,¢,z) over ¢ € [0,7).
Additive iterative algorithmscan be devised for obtainingthe
solutionin Eqg. (4). An importantquestionis whethersuch
algorithmscorvergeand,if so,whetherthey corvergeuniquely
to the correct solution. It may be possibleto prove the
corvergenceof such additive iterative algorithmsin certain
situations.However, for adatafunctionthatcontaingheeffects
of non-uniformattenuatiorandDDSRasshovn in Eq. (4), it is
generallydifficult (if notimpossible)to prove the corvergence
of additive iterative algorithms.More importantly the additive
iterative algorithms [22], in general, cannot guaranteethe
positivity of the solutionsandthus canbe susceptiblgo noise
and other inconsistenciesuchas samplealiasingthat always
accompaniesxperimentallymeasurediata.

For the purposeof simplicity, Eqg. (4) can be rewritten
symbolicallyast

dx h(z,y) f(z)

D.

g(y) = Vy € Dy, (6)

where the real and non-ngyative functions g(y) and f(z)
denotethe data and image functions with domains D, and
D, respectiely, andh(z, y) denoteghe kernelof theimaging
transformationwhich,asshavnin Eq.(4), is alsonon-neative.
The task hereis to find, from knowledge of the data g(y)
(or, equivalently, m(¢, ¢,2) over ¢ € [0,7)), a non-n@ative
solution f(z) (or, equivalently, a(7)) that satisfiesEq. (6) (or,
equialently Eq. (4).) BecauseEg. (6) (i.e., Eqg. (4)) is an
inherentlynon-neativeintegral equationwe proposdo usethe
algorithm

/ dy h(z,y)9(y)
o, T dzh(z,y) fO (@)
(7

to obtainthesolutionf(z) (i.e.,theimagefunctiona()), where
n is thenumberof iterations.

The algorithm in Eq. (7) is relatedto the expectation
maximization(EM) algorithm[23-27], which hasbeenshovn
to yield the maximization-likelihood solution when the data

n A
f( +1)(a:) = ny FAER)

1The symbolsz andy heredenotegeneral3D spatialcoordinates
in theimageanddataspacestespectiely, andshouldnot be confused
with the Cartesiarcoordinates andy in Eq. (4).

Fig. 1: Representate slicesof the activity map, superimposedn the

attenuatiormaps.

function g(y) contain Poisson noise [24]. Even in the

absenceof Poissonnoise, from the perspectie of solving

the positive integral equation, it can be shovn [28] that
the algorithm in Eq. (7) converges in the sensethat the

Kullback-Leiblerdiscrepang betweenf("+1)(z) and f(™ (z)

approacheszero monotonically at a rate faster than (%).

(Recallthat it is generallydifficult to prove the corvergence
of additive algorithmsfor Eq. (4).) If a unique solution to

Eq. (7) exists, one can show that f("+1)(z) converges to

that unique solution.? Additionally, from a practical point

of view, the algorithm in Eq. (7) is easy to implement
becausét involvesonly forwardandbackwardtransformations
and, more importantly guaranteesthe positvity of the

solution.  Numerical investigation suggeststhat the EM

algorithmis generallylesssusceptiblehanadditive algorithms
to the unavoidable noise and inconsistenciescontainedin

experimentallyacquiredSPECTdata[22].

[11. NUMERICAL RESULTS

We conducted computer simulation to evaluate the
possibility of short-scan SPECT reconstruction, as we
stipulatedabove. We considerech SPECTcardiacstudy The
3D radioactvity map hasa uniform concentrationinside the
myocardiumandis zero elsevhere. The 3D attenuationmap
is non-uniform, with a value of 0.15cm™! inside the chest,
exceptfor thelungs,which have no attenuationRepresentate
slicesof theradioactvity map,superimposedntheattenuation
map, are shovn in Fig. 1. For purposesof comparisonwe
also considereda uniform attenuationmap that is obtained
from the non-uniformone by removing the lungs. We useda

GaussiatDDSRof theform (¢, z; 1) = 5= exp {—52;52

to model the blurring effect in the data, where the standard
deviationo(n) = oy + o171 dependdinearly uponthedistance
7. NoiselessSPECTprojectiondata,coveringthefull 27 view,
was generatedwith Poissonnoise subsequentlyto produce
noisy data. The simulatedprojectiondataconsistof 120 views
of 128 (radial) x 32 (axial) sinogramswith abin sizeof 0.25 x
0.25 cm?. Thesimulatedhoisy 27 datahave abouttenthousand
countsperslice.

In reconstruction,all the simulatedviews were used for
producing“full-scan” reconstructionwhereasonly half of the
views, ranging from = /2 to 3w/2, are usedfor generating
“short-scan” reconstruction. Both modes of reconstruction
generated 28 x 128 x 32 imageswith a0.25 x 0.25 x 0.25 cm?
voxel size. In the resultsshavn belov, we consideredhree
typesof reconstructions{a) EM reconstructiorfrom the short-
scandataover; (b) EM reconstructiorfirom full-scandataover

2\We arecurrentlyinvestigatingthe existenceof the uniquesolution
to Eqg. (4) andthe conditionsunderwhich the unique solution may
exist.



27; and(c) FBPreconstructiorfrom short-scarmdataover .

Figure 2 shows representatie slices of the images
reconstructedrom noiselessindnoisydata,which containonly
the effect of uniform attenuation. Theseresultsdemonstrate
gualitatively that, for both noiselessand noisy data, images
reconstructedfrom the short-scanand full-scan data are
of essentiallysimilar quality. These reconstructionshave
effectively removedtheeffectsof attenuatiorthatcanbeclearly
obsened in the FBP reconstructiongin the form of reduced
imagebrightnesdoward the center). Notice herethat the total
numberof countsin the short-scarreconstructioris only half
of thatin the full-scan reconstruction. However, for a fixed
scanningtime, one would expectthe short-scardatato have
approximatelythe samenumberof countsasin the full-scan
data. Whenthis factoris taken into consideration,jt would
be interestingto comparequantitatvely the noise properties
betweenreconstructionsfrom both short-scanand full-scan
data,wherethe former have high signal-to-noiseatio thando
thelatter

Figure 3 shavs representatie slices of the images
reconstructeffom noiselessndnoisydata,which containonly
theeffectof non-uniformattenuationAgain, theseresultsshov
that, for both noiselessand noisy data, imagesreconstructed
from theshort-scamndfull-scandataareof comparableguality.
Thesereconstructionshave compensateceffectively for the
effects of attenuatiorthat canbe clearly obsenedin the FBP
reconstructionslt is alsointerestingto notethe differencedn
theattenuatiorartifactsin the FBPimagesbetweerthis andthe
above case.

We subsequentlintroducedheeffectof a GaussiaiDDSR,
with oy = 0.2cm ando; = 0.02, into the simulateddataand
repeatedthe studiesabove. Figure 4 displaysrepresentatie
slices of the imagesreconstructedrom noiselessand noisy
data, which contain the effects of both uniform attenuation
and GaussianDDSR. Again, theseresults suggestthat, for
both noiselessand noisy cases,imagesreconstructedfrom
the short-scanand full-scan data are of comparablequality.
Thesereconstructionshave compensateceffectively for the
effectsof uniform attenuatiorandDDSR,which canbeclearly
obsenedin the FBP reconstructionsFinally, Figure5 displays
representatie slicesof theimagesreconstructedrom noiseless
andnoisy data,which containthe effects of both non-uniform
attenuatiorand GaussiarDDSR. Again, theseresultsindicate
that, for both noiselessand noisy casesjmagesreconstructed
from the short-scarandfull-scandatahave comparablauality
andthattheeffectsof non-uniformattenuatiorandDDSR have
beencompensatedffectively for.

V. CONCLUSIONS AND DISCUSSION

It has been obsened that the redundantinformation
contained in some tomographic imaging systems can be
exploited for devising short-scan configurationsin these
imaging systems[8, 9, 13]. We have shavn previously [14,
15,17] thatredundaninformationexistsin dataacquiredover
27 in SPECTwith uniform attenuatiorand DDSR of certain
forms. Theseobsenationsled us to hypothesizeor speculate

that one may need data acquiredover = insteadof 2z for
accuratemagereconstructiorn 3D SPECTandthusto suggest
the conceptof short-scanSPECT We proposethe use of a
non-linearEM algorithm to reconstrucimagesin short-scan
SPECT It can be shavn that this EM algorithm cornverges,
andthatit corvergesto the uniquesolutionif sucha unique
solution exists. We also performeda numericalinvestigation
to verify and evaluateaccurateéimagereconstructiorin short-
scanSPECT Theseresultsindicate (at leastfor the examples
studied)that the quality of the reconstructedmagesin short-
scan3D SPECT appearsto be essentiallysimilar to that of
reconstructedmagesin full-scan3D SPECT We arecurrently
performinga detailedquantitatve evaluationof imagequality
andaccurag andwill reportits resultsin the nearfuture.

We are also conducting a theoretical investigation on
the possibility of obtaining analytical solutionsin 3D short-
scan SPECT when the effects of attenuationand DDSR are
considered. Recentwork [20, 21] on the analytical solutions
for 2D full-scan SPECTwith only the effect of non-uniform
attenuationrmayprovide usefulinsightsinto ourinvestigatiorof
short-scarSPECT Investigation®n suchanalyticsolutionscan
be theoreticallyimportantin understandinghe reconstruction
problemsin short-scarSPECT For example, the existenceof
such an analytical solutior? will imply that the solution of
Eq. (4) is unique,andconsequentlythatthe non-lineariterative
algorithmin Eq. (7) corvergesto the uniquesolution.

In thiswork, we discussonly theimagereconstructiorfrom
data acquiredat anglesfrom 0 to w. In fact, this can be
consideredas a specialcaseof the so-calledr-scheme short-
scan SPECT thatwe have proposedBasically in ther-scheme
short-scanSPECT the data can be acquiredover disjointed
angularintervals. We speculatdhat, aslong asthe summation
of theseintervals without conjugateviews is larger than or
equalto 7, imageswith quality comparableo that of images
in full-scan SPECT may be reconstructed. Our preliminary
numerical investigation has confirmed this obsenation and
suggestshatreconstructiorfrom dataacquiredover disjointed
angular internals corverges even faster than that from data
acquiredfrom 0 to 7 in short-scar6PECT*

Thiswork is theoreticallyintriguingbecausé poseseveral
theoretically interestingand challengingquestions. Does a
uniquesolutionexist in 3D short-scarSPECTwith the effects
of attenuationand DDSR?If so, underwhat conditionsdoes
sucha solution exist? Researchintendedto provide answers
to thesequestionss currentlyunderway. Also, the practical
implications of this work seemto be significant because
the proposedr-schemeshort-scarallows dataacquisitionsat
desiredprojectionviews atwhich the emittedgamma-raysnay

3For instance,the Tretiak-Metz methodis an analytic solution
to the reconstructiorproblemin 2D full-scan SPECTwith uniform
attenuation.It is highly susceptibldo datanoiseandinconsistencies.
However, its existenceguaranteethatthereis a uniquesolutionto the
inversionof the ERT from its knowledgeover 2.

“This is understandableecausefrom the numericalperspectie,
thelineartransformatiorassociatedvith dataacquiredover disjointed
angularinternalsgenerallyis betterconditionedthanis that for data
acquiredrom 0 to 7 in w-schemeshort-scarSPECT



Fig. 2: Imagesreconstructedrom simulateddatawith the only effect of uniform attenuation Representate slicesin theimagesreconstructed
from noiselesgleft panel)andnoisy (right panel)short-scarata(1strow), thefull-scandata(2ndrow), andFBP reconstructiorirom short-scan
data(3rdrow). 50and20iterationswereusedn thecaseof noiselessandnoisydata respectrely, sothattheirtotal computatiorcostis identical.

Fig. 3: Imagesreconstructedrom simulateddatawith the only effect of non-uniform attenuation. Representate slicesin the images
reconstructedrom noiselesgleft panel)andnoisy (right panel)short-scardata(1strow), the full-scandata(2ndrow), andFBP reconstruction
from short-scardata(3rd row). 50 and20 iterationswereusedin the caseof noiselessandnoisydata,respectiely.

Fig. 4: Imagesreconstructedrom simulateddatawith the effectsof both uniform attenuatiorand DDSR. Representate slicesin theimages
reconstructedrom noiselesgleft panel)andnoisy (right panel)short-scardata(1strow), the full-scandata(2ndrow), andFBP reconstruction
from short-scardata(3rd row). 50 and20 iterationswereusedin the caseof noiselessandnoisydata,respectiely.

Fig.5: Imageseconstructefrom simulateddatawith theeffectsof bothnon-uniformattenuatiorandDDSR.Representate slicesin theimages
reconstructedrom noiselesgleft panel)andnoisy (right panel)short-scardata(1strow), the full-scandata(2ndrow), andFBP reconstruction
from short-scardata(3rd row). 50 and20iterationswereusedin the caseof noiselesandnoisydata,respectiely.



undego the leastattenuationand blurring, thus providing the
freedomfor significantly reducingthe scanningtime and for
obtainingdatawith a high signal-to-noiseratio. One clinical
study that may benefitfrom sucha w-schemescanis cardiac
imagingwith SPECT
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Abstract compensated summing method using motion estimation,

In this work we present a new 4D approach for reducing@sed on the optical-flow method [7,8], for obtaining a
noise in gated SPECT perfusion images while preservig§dle image from a gated PET study.
accurate cardiac motion. The method is based on motion- In this paper we propose the following method. We
compensated temporal smoothing using a deformablgPresent the images and account for motllon in a gated
content-adaptive mesh to model cardiac motion. We use>EECT sequence by way of a content-adaptive mesh model
new, fast method for initial mesh generation. This mesh (§AMM) (Fig. 1), which is allowed to deform over time.
then deformed to track cardiac motion and smoothing 1&/€ apply temporal smoothing along the trajectories that the
performed along motion tractories through the space-tim@edes of this mesh traverse through the space-time

coordinate system. coordinate system (see Fig. 2). This approach aims to
reduce noise, while avoiding potential distortions of the
.  INTRODUCTION cardiac motion.

The quality of SPECT images is adversely affected by
noise caused by low photon counts. The problem of noise is
especially serious in gated studies, where the counts are
divided into a number of time intervals to obtain an image
sequence [1]. Because of their relatively high noise level,
gated images can potentially benefit most from appropriate
image processing.

In this paper we propose a new spatial-temporal
processing method for gated images that uses motion
tracking based on deformable mesh modeling of the
images. In nuclear medicine, spatial-temporal processing |
has become popularly known as four-dimensional (4D) Figure 1. Mesh structure used in our experiment.
processing to reflect the use of three spatial dimensions plus
time. Therefore, we will use the terms “4D” and “spatial-
temporal” interchangeably, although our preliminary eo
studies are based on a single slice of a gated imag 55
sequence, so that we only have two spatial dimensions plu 50
time. 45

Motion trajectories

i i i H 40 N
4D processing is an exar_nple of multlc_hannel image e \%&;&“
recovery, which we reviewed in [2]. The basic idea of this ‘?‘ﬁw&%
approach is to exploit the statistical correlations betweer \‘“*‘}‘;;@ﬁéﬁ”“
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the desired signal components of different image frames ir
a sequence or other collection of related images.

Methods of 4D processing have received increasing so
interest lately. Our group has proposed several 4D method
designed for reconstruction of motion-free images, such a:
those obtained in dynamic PET studies [3]. Lalush and Tsu
[4] applied 4D image reconstruction to cardiac SPECT X
images, but did not incorporate motion estimation explicitly )
in their techniques. In the broader image-processing field, Figure 2. Deformable mesh (shown for frames 1, 8, and 16),
motion-compensated processing is a well-known approachand motion trajectories for some selected mesh nodes

N X throughout the sequence.
to reduce the noise in an image sequence [5]. In the nuclear
medicine field, Kleinet al. [6] developed a motion-

Frame No.

! This research was supported by the National Institutes of Health under grant HL65425 and by the Whitaker Foundation.



. METHODS descent algorithm. More details of the implementation can

A. Motion Field Modeling be found |-n o1 )

In a CAMM, the image domain is subdivided into aB- Spatial-Temporal Processing
number of mesh elements, the vertices of which are called Let f, and f, denote image fram& (in vector form)
nodes By deformation of the individual mesh elements, &efore and after processing, respectively, with 1,...K.
deformable CAMM can be used to describe the imagerther, |etf=[f1T f;]Tande:[ﬂT ng]T represent the

motion through the inter-frame displacement of the nodes , i
entire image sequence before and after processing,

[9]. Such a deformable CAMM is well-suited for modeling , ,
respectively. Then the proposed 4D processing framework

complex, non-rigid motion, such as that of the heart. , ) .
The image domainD is partitoned intoM non- €an be described as a separable operation of the following

overlapping mesh elements, denoted by, form:

m=12...,M, defined by the nodes. The image motion is f:(HS[E-I o (4)
then derived from the inter-frame displacement of the%‘here H, and H,
nodes as follows. Over a particular elemént the motion °
field is described as

represent the spatial and temporal
processing operators.
In this paper, a spatial low-pass Butterworth filter
J described in the next section) is used for the operhtin
dx) =% ¢,.(x)d.. (1) (
(x) nZ:lcb() Eq. (4) | N
where d.and ¢.(x) are the displacement vector and The temporal processing operatér is implemented as

int lati basis functi iated  with d a finite impulse response (FIR) filter along the motion
Interpo’ation - basis function ~associated with noae trajectories. For each voxal in framek the image value is
respectively, andN is the total number of mesh nodes

rocessed by, according to the following equation:
Note that the support of each basis funciqgrx) is limited P W, 9 geq

K
only to those element3,, associated with node. A B £
In practice the nodal vector, in the motion model in fie(x)= . R (D) fiear (x = diy () )
(1) are unknown, and must be determined from the =%

observed data. To track the motion between image frameghered, (x) denotes the relative motion between voxel
a natural approach is to displace the mesh nodes so thatjfi¢amek and its corresponding voxel in frarkel. The
corresponding mesh elements in the two frames achieve H?Fer coefficients h (|) are defined as:
best match in terms of their image values. ’

Let f(x) and f(x) denote, respectively, the image 1 oY
functions of a reference frame and a neighboring frame in h(1) :E[l_%J 1= _K/ZK/Z (6)
the sequence, known as the target frame. As a matchin

criterion the following objective function is adapted for Ouyvgere Yy is a parameter used to control the degree of
application from [9]: temporal smoothing, an€ is a normalization constant

defined so that the filter has unity DC response. Filters that
are more optimal will be considered in future studies.

3233 | J(i0crae0)- 100)° o

D lll. EXPERIMENTS
" (2) _
A. Evaluation Data

+§(1_Wm)Ed ' The proposed spatial-temporal processing algorithms
, . . were tested using the 4D gated mathematical cardiac-torso

where the first term is the matching error accumulated ov MCAT) D1.01 phantom [10]. The field of view is 36 cm:
all M mesh elements between the two frames, the sec (‘1 pixel sizé is 5.625mm P.oisson noise. at a level 01: 4
term E, is a measure of mesh regularity (to be definegyjion total counts for the entire sequence was introduced

below), andW,, is a constant chosen for trade-off betwee 99m study. In this preliminary

t represent a clinicallc
mesh matching accuracy and mesh regularity. : . . :
The mesh rgegularity r};easulE@ in (2)gis def?;led as: study, a single slice (No.70) was used. This slice had

) approximately 5.5x 10" counts per frame (a total of 16
frames). No attenuation correction was used.

' ©) B. Mesh generation
The mesh structure was constructed using a new method
where N is the total number of mesh nodes in the imageve have proposed [11]. A total of 389 mesh nodes were
and [, is the set of immediate neighboring mesh nodes thased in the mesh shown in Figure 1, which is only about
are connected to node one-tenth the number of pixels. Note that the algorithm
The nodal vectorsl, are then solved numerically by automatically places the mesh nodes densely in the
minimizing the objective function in (2) with a gradientMPortant heart region, and sparsely in the background.




C. Motion Field Estimation Spatial, ST-NM, and ST-DM methods were 3.45, 0.50 and
The noisy projection data were first reconstructed b§.28, respectively. Again, the best performance was

using the maximum-likelihood expectation-maximizatiorachieved by the proposed ST-DM method. In future studies

(MLEM) algorithm [12]. In this step image frames werewe will evaluate quantitatively the effect of the algorithms

reconstructed in an independent, frame-by-frame fashioon ejection fraction measurements, perfusion-defect

To help suppress the noise level in the reconstructeétection, and apparent wall motion.

images, individual frames were smoothed spatially with an

order-5 Butterworth filter with a cutoff frequency of 0.3 IV. DiscussioN

cycles/pixel. Afterward, level equalization was applied to In this paper we demonstrated that one can improve the

enhance the image features in the relatively weak righquality of the reconstructed images in gated SPECT by use

ventricular region. of spatial-temporal processing with deformable content-
The resulting sequence was then used for motiataptive mesh modeling. Such an approach can effectively

estimation based on (2), where the paraméterwas set to suppress the noise in the images without distorting cardiac

0.95. The mesh structure in Fig. 1 was used as the initt@Ption. By the time of the conference, we hope to extend

mesh. In our experiment the nodal positions were updat@H implementation to 3D volumetric reconstruction of
only for nodes belonging to a circular region of interes§ated image sequences.

containing the heart. This served to reduce the
computational burden.

In Figure 2 we show the deformable mesh obtained Bl
the procedure described above. For illustration purposes,
mesh structures are shown for frames 1, 8, and 16. In
addition, the motion trajectories of some selected mesh

nodes are also shown throughout the sequence. 2

D. Results

In this section we present results obtained from
processing of images reconstructed using the MLEM
algorithm. For comparison, the following processin
methods were considered: (1) spatial-only filtering ]
(“Spatial”), in which an order-5 Butterworth filter with a
cutoff frequency of 0.3 cycles/pixel was applied to the
reconstructed images; (2) the proposed 4D processipﬂ
method (“ST-DM"), applied to the MLEM reconstructed
images; and (3) the same smoothing filters as in (2), except
that motion compensation was omitted (“ST-NM"). The
purpose of evaluating the third method is to demonstra[t&
that, while temporal smoothing without motion
compensation can reduce noise, it yields a significafg]
degradation of the representation of cardiac motion.

In Figure 3 we present some reconstructed images for
visual evaluation. Note that “Original” is the phanto
degraded by the system blur to represent an approxir:L@
best case image for comparison. The image results suggest
that both ST-NM and ST-DM can significantly reduce th
noise level in the reconstructed images. However, t
images from the ST-NM method suffer from significant
motion distortion. This is evident when viewing the image
as a cine loop (movié),but it can also be measured
guantitatively. Failure to compensate for motion (in the ST-
NM method) also reduces the frame-to-frame variation in
the left ventriclar volume (Figure 3), which we expect Wi”[lO]
distort measurements of ejection fraction.

To quantify these observations, we plot in Figure 4 the
time activity curves (TAC) for a small region in the left
ventricular wall vs. the frame number, computed for images
obtained by the three methods. The total squared erriﬁ]
between the original TAC and TACs obtained by th

2 Image sequences available for cine viewing at
http://www.iit.edu/~branjov/3D01.htm
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Figure 3. Results obtained by maximum-likelihood expectation-maximization. “Spatial” denotes spatial
smoothing only. “ST-NM” denotes spatial-temporal smoothing without motion compensation. “ST-DM” denotes the
proposed spatial-temporal smoothing with motion compensation achieved using a deformable mesh. “Original”
denotes the phantom degraded by the system blur to represent an approximate best-case image for comparison.
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Figure 4. Time activity curves (TAC) for a small region in the left ventricular wall vs. the frame number. Note the
failure of ST-NM to capture the motion at frame 8 and 9.
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Abstract

The dynamic expectation maximization algorithm (dEM)
has been developed to determine the kinetic information of
various metabolic processes from SPECT projection data
acquired with a single slow camera rotation. Depth-dependent
detector response compensation (DRC) has been tested as a
means to improve the accuracy of these reconstructions. As
well, by limiting the number of temporal frames in a dSPECT
reconstruction, it is hoped that improved image quality will
result. With this reduction in temporal frames, it becomes
possible to use block-iterative type reconstruction methods to
decrease reconstruction time.

To test the effect of DRC in the dEM algorithm, a series
of computer simulations have been performed using the
dMCAT phantom modified to model the Kinetic response
to Tc-99m Teboroxime. Reconstructions indicate that the
inclusion of three dimensional DRC with the dEM algorithm
improves image quality compared to no DRC. Furthermore,
dynamic reconstructions are able to provide additional
information, namely Kinetic parameters, not attainable with
static reconstruction methods. A reduction in the number of
temporal frames reconstructed resulted in slightly increased
image quality and time activity curve accuracy, but at the
expense of decreased temporal resolution. Such a reduction
may be acceptable if the temporal changes present are not great
compared to the data acquisition time.

. INTRODUCTION

In a conventional SPECT study, it is possible for the
distribution of the radiotracer within the body to change over
the acquisition time. If such a temporal change is significant,
inconsistent projection measurements will result when acquired
with a conventional slow camera rotation [1]. Often such a
temporal change may be the result of physiologcal changes in
the body related to organ function and as such, may provide
information useful for diagnostic purposes. In order to obtain
estimates of these dynamic processes, dynamic SPECT using
multiple fast rotations of a SPECT camera has often been used
in the past [2]. However, such data collection often results in a
low signal to noise ratio, thus resulting in poor reconstructed
images. Alternative methods of dynamic SPECT have been
proposed that produce tomographic kinetic information, while
maintaining a conventional slow camera rotation. We will
denote such a data acquisition technique as dSPECT (dynamic
SPECT) and will present in this paper, improvements to the

1This work was supported in part by grant number HL 50349 from
the National Heart, Lung and Blood Institute

dynamic expectation maximization algorithm (dEM) for
determining the temporal behaviour of activity within an object
from data acquired in such a manner.

In our method of dSPECT, temporal changes in the
radiotracer distribution within an object are represented in
terms of linear inequality constraints over time [3]. Once
transformed into this representation, it is possible to use a
modified version of the expectation maximization algorithm in
order to reconstruct the changes in activity that occur over the
data acquisition time.

In conventional SPECT, it has been determined that in
most cases, improvements in reconstruction accuracy and
lesion detectability result when the 3D depth-dependent
nature of SPECT spatial resolution is taken into account in
the reconstruction process [4]. This aids the reconstruction
by making the projection data more consistent as each object
voxel is sampled over a number of detector elements at each
projection angle. This is similarly the case in dSPECT and it
has been shown that reconstruction accuracy improves when
multiple projection angles are acquired simultaneously at
the same time point [3]. Thus, the inclusion of 3D detector
response compensation (DRC) into the dEM algorithm should
result in improved dSPECT reconstruction quality, and hence
more accurate Kinetic estimates.

Because of the rather large computational demand involved
in reconstructing a dynamic SPECT data set, previous
implementations of the dEM algorithm have focused on
reconstructing transverse slices with depth-dependent detector-
response within each slice only. As well, at each projection
angle, a separate radiotracer distribution was reconstructed.
While such a method results in high temporal resolution, this
quickly produces an overabundance of data when reconstructed
with fully 4D methods (eg., 64 — 128 x 128 x 128 images
~ 500MB of data). Because of this, when a high degree of
temporal resolution is not required, it would be advantageous
to reduce the number of temporal frames reconstructed. As
well as reducing computer requirements, this should provide
improved image quality as the data from each temporal
frame is better supported across a subset of projection angles.
Computation time can also be reduced in this scenerio as it
allows for block-iterative reconstruction methods to be used as
we shall see.

[I. DYNAMIC EXPECTATION MAXIMIZATION

The dEM algorithm [5] reconstructs a series of three
dimensional spatial images of the tracer distribution within the
object. For example, from dSPECT projection data acquired of



a 128 x 128 x 128 object over 64 projections, the current dEM
algorithm reconstructs 64 different 128 x 128 x 128 images,
where each image corresponds to one of the 64 time frames
when a projection was acquired.

A. Linear Inequality Temporal Constraints

For a given object voxel, any change in activity from one
time frame to the next can be represented in terms of the activity
difference over the time frames. Two possibilities exist for how
the activity can vary over two consecutive time frames. These
are:

i) Decreasing activity from one frame to the next.

rg>212>20 or xog—w12>0 (1)

ii) Increasing activity from one frame to the next.

0<zo<x1 or x4 —x9>0 2

In both cases, the differences have been written so as to
provide a positive quantity. As well, when the difference
between two consecutive time frames is equal to zero, we
have o = = (ie., static behaviour). Over all J time frames,
we can denote the differences in activity within the kth voxel
as the vector xy, and relate it to the voxel activity xj by the
matrix-vector product,

Xk = ApXk (3)

where Ay, is a matrix of size (J x J) and xj. and Xy are vectors
of length J, representing the activity and the activity difference
respectively, within the kth object voxel over the J time
frames. It should be pointed out that each object voxel will
have a corresponding difference matrix Ay, which can then be
combined together in a large matrix A for the entire object.

The simple temporal constraints of (1) and (2) are sufficient
to describe a variety of clinical circumstances (eg., washout
from the Kidneys, accumulation in the liver or bladder, etc.)
[6], but they are not able to describe other cases comprised
of a combination of both increasing and decreasing behaviour.
For such cases, it is possible to formulate a difference matrix
by using a combination of (1) and (2) that, when operating
on the activity vector, will produce positive activity differences
at each time and with the desired overall temporal behaviour.
With a temporal link established through the use of the linear
inequality temporal constraints, we can now turn our attention
to determining the activity difference vector xy. For this, we
will make use of iterative reconstruction methods, particularly
the expectation maximization algorithm [7], although it will be
seen that any non block-iterative reconstruction method (eg.,
ART, MART, etc) will suffice at this point.

B. Dynamic Projection Operator

In the conventional expectation maximization (EM)
algorithm, a forward projection operator is applied to the
estimated activity distribution within the object at each
projection angle. This estimated projection is then compared

to the actual collected data for the same angle and then
backprojected into the object space in order to arrive at a
scaling factor for each object voxel. Mathematically, the
projection and backprojection operations can be written as
matrix-vector products so that the EM algorithm for SPECT
can be written,

1,J

Z Cijkyij

1,7 K n
Zm‘:l Cijk i,5=1 > k=1 Cijrr Ty

where xj, represents the estimated activity in the kth object
voxel, C;j is the projection matrix that maps the voxelized
three dimensional activity distribution into the two dimensional
camera space, and y;; represents the actual measured values in
the 4th detector element at the jth projection stop. Here the
object activity distribution zj, is assumed to remain fixed over
all the projection measurements acquired and so the size of
the projection operator is (I = J x K) where | is the number
of detector elements, J is the number of projection stops, and
K is the number of object voxels in the reconstructed three
dimensional object space. The projection operator, C;;; can
be written as a matrix comprised of the following:

(Cik)
(Ciak)

C = : )
(Cir)

where the (Cj;x)’s represent the projection of the kth object
voxel into the detector element 4 at the jth projection angle.

p s
xn+1 _ ‘Lk
A =

(4)

In the dynamic case however, the projection operator is no
longer an (I x J x K) matrix since the object distribution is
different at each projection angle, but rather isa (I « J x K * J)
matrix. In the dynamic case, the dynamic projection operator
(for a single detector head) can therefore be written as,

) 0 (Cox) 0 0

c = (6)
0 0 0
0 0 0 (Ci)

The use of a Gaussian diffusion projection matrix for
modelling the three dimensional depth dependent camera
response has been shown to be both computationally efficient
and accurate in static SPECT reconstruction algorithms [4].
For this reason, it was chosen to use this method in order to
perform the projection and backprojection steps in the dEM
algorithm. Due to space limitations, the reader is directed to
[4, 8, 9] for more information on Gaussian diffusion DRC.

C. The Dynamic EM Algorithm

As mentioned previously, for any temporal behaviour, an
appropriate linear difference matrix can be obtained so that the
difference in activity between any two consecutive time frames
will always be a positive quantity. As positivity constraints
in the unknown variable are inherent in the expectation



maximization algorithm, it is natural to proceed to use this
algorithm in order to solve the dynamic SPECT problem.

Following along the lines of the static EM algorithm (4), a
dynamic version can be obtained using the activity differences.
Thus, the dEM algorithm can be written as,

I.J

sn -1

X = 1,7 % Z Z K(CA~ ),Z]kyw -
> iim (CA g 520 D o1 (CAT )i X

where the vector x; is the activity difference vector for the
kth voxel and is related to the activity by equation (3). Notice
that the projection step is actually a projection of the estimated
activity distribution within the object at the appropriate time
interval. Following reconstruction, the activity difference vector
is converted into the activity vector by x; = A;lik.

Given the amount of data produced in a typical dSPECT
scan, it is often desireable to reduce the number of unknown
variables in order to reduce computational demands. In order
to do this, when a high degree of temporal resolution is not
required, the number of frames reconstructed can be reduced
by altering the dynamic projection matrix such that the tracer
distribution remains constant over a subset of angles. Thus,
if the number of projection angles is J, and N is the desired
number of temporal frames (N < J), then over each J/N
angles, the object activity vector x can be held constant. In
such a case, the projection matrix can be written,

(Cix) 0 0 0
: 0 0 0
0 (Citan+1)k)
C = 0 : 0 0 (8)
0 0 0
0 0 0 :
0 0 0 (Cisk)

Similarly, the sizes of the difference matrix Ay and the activity
vector xj shrink to (V x N) and (N x 1) respectively. As
each temporal frame is reconstructed based upon the projection
data of a few angles, it is possible to apply block-iterative
reconstruction methods at this point in order to decrease
reconstruction time, for example, grouping the subsets as

{(Ci1r) s (Cicansik) - 1 {(Cizk) , (Cicaynt2)k) 5 --- ) €LC.

[11. SIMULATIONS

To test the accuracy of the fully 4D dEM algorithm,
simulations were performed using a version of the dMCAT
[10] model modified to model the extraction and washout
of Tc-99m Teboroxime [11]. Kinetic parameters used in
this model were based on those found from compartmental
modelling of Teboroxime within canine myocardium [2].

Two scenerios were simulated with the dMCAT consisting
of a healthy myocardium and the same myocardium with an
anterior wall defect. Projection data starting at 1 min post-
injection was created using an analytic projector model of a dual

head SPECT camera. Detector heads were placed in the 90°
configuration and acquisition proceeded from LAO and RAO
to LPO and LAO respectively for each head (ie., 90° rotation
per head) in a circular orbit of radius 30 cm. A total of 32
projections per head (20 s per projection) were acquired into
64 x 64 pixel matrices with a pixel size of 6.25 cm. For both
heads, a low energy, high resolution collimator was simulated
with a FWHM of 1.59 cm at 30 cm. Noiseless projection data
was generated and scaled to 5 million total counts and randomly
generated Poisson noise added.

Reconstructions were carried out using the static MLEM and
the dEM algorithms both with and without the inclusion of 3D
detector response. dEM was used with high temporal resolution
using all 32 time frames, as well as with 8 and 16 frames. In all
cases, a total of 150 iterations were performed.

IV. RESULTS AND DISCUSSION

In Figure 1, the impact of using 3D DRC can be seen on
a single short axis slice shown at t = 2 min. Reconstructions
were performed both with and without 3D DRC. It is apparent
from these reconstructions, that when DRC is applied to a
dEM reconstruction, improved images result. In this time
frame, it appears that the inferior wall of the myocardium is
better distinguished in the DRC reconstruction. Additionally,
contamination from the liver into the myocardium also appears
to be lessened in the 3D DRC image compared to the no DRC
image. In both cases, reconstructed time activity (TA) curves
disagree to some extent with true TA behaviours, although the
general trend for each organ is obtainable and in fact, the initial
fast uptake of tracer into the myocardium is distinguishable in
the first two time frames.

True Image 3D DRC No DRC
Defect
y . -
- s

e
L]

--- Liver
- Myocardium
—— Defect

Figure 1: Short axis slice of dMCAT phantom at t = 2 min obtained
from dEM reconstruction with and without DRC.

Figure 2 shows sample images of the same short axis slice
reconstructed with differing numbers of temporal frames.
Images produced from 16 or 8 frames appear very similar, but
slight differences can be seen between the dEM and static
MLEM reconstructions. At the time frame shown, contrast
between the myocardium and the defect appears slightly




greater in the dEM reconstructions compared to the MLEM
result. Additionally, the effect of activity uptake into the liver
is reduced in dEM vs static reconstructions as the dynamic
reconstruction is able to account for the increasing liver activity
over time, thus minimizing streak artifacts in the inferior heart
wall. Regional TA curves appear very similar in all dEM
reconstructions, although the initial fast myocardial uptake is
no longer apparent when decreased to 16 temporal frames.

16 Frames 8 Frames Static
-9 - B
L3 -

___________

2 : 2 === Liver 2
- Myocardium
— Defect

Figure 2: Short axis sice of dMCAT phantom at t = 2 min obtained
from dEM reconstruction with fewer temporal frames and with DRC.

It was seen in this simulation that the location of the
myocardial defect was able to be determined through both
dynamic and static reconstructions. With static methods,
images depict an average activity within each object voxel. In
this simulation, the data acquisition was started soon enough
and was short enough so that the average activity within the
myocardium was higher than that in the defect. However, if the
acquisition is started later, or if the acquisition time is longer,
a static reconstruction may depict the defect with a greater
activity, thus giving the appearance of a healthy myocardium.
If reconstructed with a dynamic method such a dEM, this effect
will not occur as the defect and healthy myocardium can be
distinguished based on their dynamic parameters. However,
as one decreases the number of temporal frames in a dEM
reconstruction, this effect may become more important.

V. CONCLUSION

A fully 4D dynamic expectation maximization algorithm
has been presented for use in dynamic SPECT imaging using
slow acquisitions.  Depth-dependent spatial resolution is
modelled through an incremental Gaussian diffusion, while
temporal constraints are enforced in the object at each time
frame. These constraints can model a wide range of temporal
behaviours, and can be reduced in number in order to decrease
reconstruction time and computer requirements. Additionally,
reducing temporal frames allows for the possibility of
performing an adaptive framing method whereby temporal
frames are finely sampled when rapid changes in activity occur
and are more coarsely sampled during slow changes.

In computer simulations, the inclusion of DRC in this
algorithm has resulted in increased reconstruction accuracy
compared with no DRC. As well, by limiting the number
of temporal frames in the reconstruction, slightly improved
reconstructions result as each reconstructed frame is supported
by multiple projection angles. However, one must be cautious
of reducing the number of temporal frames too much as a
resultant decrease in temporal resolution follows.
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Abstract

Three-dimensionatlectronmicroscopy (3D-EM) aimsat
obtainingstructuralinformationof macromoleculacom-
plexeswithin a typical resolutionrangeof between2 to
0.3 nm from the projectionimagesproducedby an elec-
tron microscope.As ary otherimagingdevice, the elec-
tron microscopentroducesa transferfunction (calledin
this field ContrastTransferFunction, CTF) into the im-
ageacquisitionprocessvhich modulateghedifferentfre-
guenciesof the projectionsignal. Thus, the 3D recon-
structionsperformedwith theseCTF-afectedprojections
is alsoaffectedby animplicit 3D transferfunction. De-
pendingon the preparationprocedure the effect of this
CTFis quitedramatidimiting severelytheachievableres-
olution. In this work we make useof the Iterative Data

Refinementechniqueto obtainCTF-freereconstructions.

It is shavn thatthe approachcanbe successfullyapplied
to noiselesaswell asto noisydata.

1 Intr oduction

The structuralinformation of biological complexes, i.e.,
their shapeand spatialconformation,is vital in molecu-
lar biology ascomplementarynformationto biochemical
studies. This knowledgecan help, for example,in nen
drug developmentandin the understandingf mary dis-
eases. Nowadays,the 3D structureof a protein canbe
addressedising two differentapproaches:one predicts
the conformationaktateof the complex basedon its bio-
chemicalpropertiesandthe possiblesimilarity with other
proteinswhosestructureis known; andthe otherapplies
3D reconstructioralgorithmsto datacollectedby some
experimentaktechnique.Thereexist several possiblebio-
physicaltechniquedor visualizinga protein,suchas X-
rays,NMR or electronmicroscoy (EM). Themaindraw-
backsof thefirst two arethatthey areveryrestrictive with
respecto the rangeof proteinsthat canbe studied. 3D-
EM is atechniquewhich providesonly medium-lov res-
olution structuralinformation of macromoleculeshow-
ever, it doesnot needspecialconditionsof the specimens
and it hasbeenestablishedas a usefultechniquein the
field of structuralbiology.

Oneof thelimiting factorsof 3D electronmicroscogy
is that it is difficult to obtain high resolutionstructural
detailsdueto the strongeffect of the microscopetrans-
fer functionon the experimentalprojections Particularly,
aswill be shawn later, the CTF introducessevere phase
shifts and eliminatesall information at certainfrequen-
cies. One way of obtaininghigher resolutionresultsis
by compensatindor the effect of the microscopetrans-
fer function. Several suchmethodshave beenproposed



[1, 6, 7, 12, 14, 16], but they usually apply somekind
of Wienetlike division by the transferfunction in the
Fourierspaceandalsoamplify noiseatthosefrequencies
wherethetransferfunctionhassmallmagnitude.

In this work we apply the Iterative Data Refinement
(IDR) techniqueintroducedby Censoy Elfving andHer
man [2] and further studiedby Hermanand co-workers
[8, 9, 17] to remove the effect of the microscopemper
fection and, thus, obtain high resolutionstructuralinfor-
mationaboutthe macromoleculesinderstudy Although
in this work only simulationswith phantomshave been
carriedout, the resultsareencouragingenoughto justify
futuretestson experimentadatasets.

2 Materials and methods

Contrast Transfer Function

Imageformationby anthe electronmicroscopds dueto

two different physical processesluring the electronin-

teractionwith the specimenfirst, a shift in the electrons
phaseandsecondanelectrondirectionchange Both ef-

fectsarecombinedto producea single modulationtrans-
fer functioncalledContrasfTransfer-unction[5, Chapter
2.11]. A cross-sectiongplot of sucha modulatingfunc-

tion, typical for cryomicroscop, canbe seenin Figurel.

Notice that the sign changesand the crossingsof 0 are
responsibldor a contrastinversionin the projectionim-

ageandfor thecompleteeliminationof theinformationat

certainfrequencies.A parametricmodelof this transfer
functionis givenin [15], andit is usedin the simulations
presentedh this work.

Iterati ve Data Refinement

This technigquewasfirst introducedin Censor[2] in the
contet of 2D medicaltomography seeSection10.5in
[3]. Theunderlyingideais to changeteratively the pro-
jectionimagesso thatthe processcorvergesto theideal
(without transferfunction) projections. Calling gik the
projectionin thedirectioni attheiterative stepk, gk theset
of projectionsatstepk, P, theprojectionoperatoiin thedi-
rectioni, C; thecontrastransferfunctionoperatoifor that
image,and R the reconstructioroperatoy the IDR algo-
rithmis formulatedasgl! = W+1g0 + (B — G PR

CTF value
0,8

0.8

0.4

-0.4

-0.6
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Figurel: CTF usedin thecryomicroscop simulations.

wherep“t1 is a relaxationparameteappliedat iteration
k+ 1 and g° representshe setof experimentalimages.
Basically theprocedurgroceedssfollows: afirstrecon-
structionis donewith the experimentalimagesg®, then
every projectionis modified following a mixture of the

original projections,the reprojectionof the just recon-
structedvolumeandthis samereprojectiomafterthe CTE

Thenew setof imageds againusedfor reconstructiormnd
soon. ART+blobs[10] hasbeenusedasthe reconstruc-
tion operatorR.

Simulations

For the sale of objective assesmenbf quality, simula-
tionswith aphantomhave beenrun following the Figures
of Merit approachdescribedn Sorzand13]. The phan-
tom correspond$o bacteriorhodopsinyhosestructureis
known at atomicresolution(3.5A) [4]. The surfaceren-
deringof this structurecalculatedrom avolumesampled
at 2A/pixel, canbe seenon Figure2.
Computationaprojectionshave beendonesimulating
the cryomicroscop conditions. In cryomicroscop the
specimensare embeddedn ice, and are thenimagedat
very low electrondosego presere structuraldetails As
a consequencethe projectionimagesthat are obtained
with this techniqueare extremely noisy, with signal-to-
noiseratioslower than1.0. The CTF thathasbeenused
for the projectionsis shovn in Figure 1. 2000 images
were taken all over the projectionspace,a selectionof
theseprojectionsis shovn in Figure 3. Angular Gaus-
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Figure 2: Bacteriorhodopsirphantomfiltered at 17A
(maximumresolutionpermittedby the simulatedCTF).

Figure 3: A selectionof projectionssimulatingcryomi-
croscoly imagesfrom the bacteriorhodopsiphantom.

siannoise(N(0,5)) andshift Gaussiamoise(N(0,2)) have
beenaddedto simulatethe positionaluncertaintyin 3D
electronmicroscoyy.

3 Results

Threedifferent reconstructiondave beenperformedto
testthe efficacy of the IDR algorithm: thefirst onewith-
out ary CTF correction,the secondonewith phasecor-
rection,andthethird with amplitudeandphasecorrection
via IDR. Figure 4 shaows the resultsfor eachcasewhile
Table 1 shovs the L2 andL1 measure®f the error [13]
betweereachreconstructiomndtheoriginalphantomand
the maximumresolution[5, Chapter5.V] achieved with
eachmethod. Table 1, aswell asthe 3D reconstructions

| Correctieaction| L2error | L1 error | Resolution]

No action 0.995844| 0.961378 28A
Phasecorrected | 0.996125| 0.963414 20A
IDR 0.997908| 0.967625 17A

Tablel: Reconstructiosimilarity measurafterdifferent
correctve actions.

performedwith the differentdegreesof CTF correction,
shav thatthe IDR techniqueachiezesbetterreconstruc-
tionswith higherresolution.

4 Conclusions

The IDR’s ability of remaoving the transferfunction ef-
fect with noiselesgdatahasbeenprovedin [9]. In this
work we have extendedthoseresultsto extremely noisy
data. At the sametime, we have shavn the importance
of applyingCTF correctionto 3D electronmicroscoyy in
orderto obtain high resolutionreconstructions.Further
work mustbedoneto tunetheIDR freeparameterso the
specificcasesof cryomicroscop and negative staining.
However, thesepreliminaryresultsencourageus to pro-
ceedfurtheron experimentaldatasetswith this CTF cor-
rectiontechniquewhich allows the applicationof particu-
lar transferfunctionsto eachprojectionandwhich avoids
the noiseamplificationeffect causedoy mostothercor
rectionmethodsusedsofar.
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Abstract

Continuous scanning mode in 3D whole body PET studies
has the advantage of axial sensitivity uniformity over the
majority of the axial FOV. However this scan mode requires
large data handling compared to conventional discrete scans.
In this work, we have implemented and evaluated a new
continuous 3D scan method using 'on-the-fly' Fourier rebinnig.
In this method, sinograms for the pair of rings are added in
real-time into the sinograms of the incremented ring pairs by
moving the bed axially one detector width at a time. For a N-
ring scanner, 2N-/ sinograms are transferred to a host
computer at each bed position and rebinned into direct 2D
sinograms using Fourier rebinning. Phantom and human
studies showed that the axial image uniformity is achieved.
This method can minimize the time for offline data processing
and makes the continuous 3D scan more practical in clinical
whole body studies.

1. INTRODUCTION

3D whole body PET scan offers the advantage of high
sensitivity and can reduce patient dose while maintaining high
signal to noise ratio (S/N). In conventional whole body scan,
acquiring at distinct bed positions overlapping several slices
results in an axially varying sensitivity profile due to the
cylindrical geometry. In order to minimize the axial non-
uniformity, it is necessary to optimize the number of
overlapping end slices [1] and maximum ring differences being
incorporated in the final images.

Several investigators have shown that the continuos axial
sampling method is effective for the elimination of the axial S/N
non-uniformity in the reconstructed images [2, 3 4, 5]. This
sampling method can be implement using conventional
histogram mode acquisitions by moving the bed in a small
discrete step or using list mode acquisitions by moving the
bed in a true continuous motion. However, due to the vast
amount of data produced by this scan mode, the total axial
distance that can be covered is limited by the available memory
and disk space. And the computation time for data to be re-
sorted and added into sinograms may decrease the throughput
of the continuous 3D scans.

In this work, we report on a new implementation of the 3D
continuous scan mode using ‘on-the-fly’ Fourier rebinning, in
which the bed is moved by axial width of detectors and
synthesized sinogram data sets are transferred and rebinned
into 2D sinograms at each bed position. This method does not
require large memory and disk space and can improve data
processing efficiency.

I1. MATERIAL AND METHODS

A. Data Acquisition

All data were acquired on a Shimadzu SET-2400W PET
scanner [6], which is a 32-ring system with an axial detector
width of 6.25 mm and an axial FOV of 200 mm. In 3D mode, all
possible coincidence pairs of 1024 sinograms are acquired. The
front-end data acquisition system consists of large-scale
acquisition memories (1GB) and a microprocessor that controls
data collection in histogram mode, real-time corrections for
dead time and decay of radioisotopes, and data transfer to a
UNIX host computer with a storage disk. The acquisition
software was modified for the continuous scan mode to move
the bed by the axial width of detector, shift the memory
address for sinogram matrices at each bed position, and write
the data acquired to the disk sequentially, as described below.

For a N-ring scanner, N’ sinograms ¢, (s, ¢, 7, 1,) are
acquired for the pair of rings (; r;) at the kth bed position. In

the continuous scan mode, g, (s, ¢, 7;, , ) are added into 2N-
I sinogram data set p, (s, ¢, Ar) inreal-time as follows:

kg

p,(s, ¢, Ar) = Eqk(s,¢,r1+k, r,+k) )]

Where

h=0,1,2,---,N +n-1,
Ar=0-r)=0,£1,+2,--- =Ar,
kmin

Ky = min{h, N -|Ar|-1}.

ax ’

=max{0, h-n+1},

In this work, we used Ar,, = N —1. With n bed positions,
N+n—1 data sets are acquired and each data set p, (s, ¢, Ar)

consists of 2N-1 sinograms except for last N-/ data sets. An
example of the data sets is shown in Figure 1.

Lines of response LOR's) corresponding to larger ring
differences (larger azimuth angle) are measured less frequently
than those with smaller ring differences. In general, LOR's with
ring differences of Ar are measured N-/Ar/ times. In our
implementation, the sets of ring difference data remain
unscaled relative to each other. This means the sinograms
being weighted by the number of times they are measured,
which is able to improve S/N ratio in the final reconstructed
image [3].



After the acquisition at the kth bed position, p,(s, @, Ar) is

transferred to the host computer. After the data transfer is
completed, the memory buffer can be reuse for a new data set.
As a result, the total size of sinogram data sets for a 3D
continuous scan is given by (2N-1)X(N+1)XN,, not
depending on the number of bed movements, where N, is the
number of bytes of memory buffer per sinogram.
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on-the-fly Fourier rebinning of 2N-1 sinograms

Fig. 1: Schematic representation of the lines of response and
3D data matrices for the continuous 3D whole body scan with
a N =
detectors. In the 3D data space, each square corresponds to

6-ring scanner, which is indicated by the shaded

one oblique sinogram for the pair of rings (7;, r;), and each 6x6
matrix corresponds to sinogram data set at each bed position.
The shaded area in the sinogram matrices is an example of
which

synthesized sinogram data set, is transferred and

processed at each bed position.

B. Data Processing

To correct the transferred 2N-I sinograms for detector
efficiency variations, normalization correction factors are
calculated from the conventional 3D normalization data by
averaging normalize factors of the same ring differences in a
similar way as (1). Attenuation correction factors are calculated
from attenuation maps, which are reconstructed and assembled
from 2D whole body transmission scans with conventional
discrete bed motions.

The corrected sinograms are rebinned into 2D direct
sinograms using Fourier rebinning [7]. In a given oblique
sinogram, the azimuth angle is approximately constant, so a 1D
interoperation across different oblique sinograms is not
required. As a result, one data set transferred at each bed
position can be processed independently, because it includes
pairs of oblique sinograms with opposite values of Ar, which
are merged to calculate discrete 2D Fourier transform as
equation (6) in [7]. The resulting 2D data sets are reconstructed
using 2D filtered backprojection or ordered subset EM (OSEM)
algorithm [8].

C. Phantom and Human Studies

Phantom studies were performed in order to determine the
axial uniformity in S/N using a 3D continuous data collection
protocol compared with the conventional 3D whole-body scan
protocol in the same total scan time. A 15cm diameter, 60 cm
high cylindrical phantom containing about 2 mCi of F-18 were
acquired. In the conventional discrete scans, data were
acquired with 200 sec x 3 bed positions overlapping end slices
of 5 or 10, and naximum ring difference of 22 was used for
reconstruction. In the continuous scan, data were acquired
with 10 sec x 60 bed positions. The percent standard deviation
of the reconstructed images were calculated by drawing a 8 cm
diameter ROI at the center of each image plane.

3D Whole body scans of a normal subject were also
acquired in the conventional discrete scan and the continuous
scan. In the discrete scan mode, emission data were acquired
with 4 min x 3 bed positions overlapping 5 slices, 90 min after
injection of 4 mCi "FDG. Transmission data were extracted
from a 2D simultaneous emission and transmission scan
acquired with 2 min x 3 bed positions. Attenuation correction
factors were calculated from the reconstructed attenuation map
processed with the non-linear Gausssian filters [9]. In the
continuous scan mode, emission data were acquired with 12
sec x 60 bed positions. Emission images were in all cases
reconstructed using OSEM reconstruction with 1 iteration and
24 subsets [6]. A post-reconstruction 2D Butterworth filter
with 16 mm cut-off was applied to the images. No axial
smoothing and weighted summation of overlapped images
were performed.

III. RESULTS

Figure 2 shows the axial variation in standard deviation of
the uniform cylinder for the discrete scan (solid line) with
different overlap and for the continuous scan (circles). These



plots show that the continuous scan provide a better noise
uniformity, while noise is amplified considerably near the gaps
between bed positions in the discrete scan. Using 10 slice
overlap, axial nonuniformity is slightly improved while the axial
coverage is shortened.

° ® continuous

1S — discrete (overlap:5)

% Standard deviation

Slice
80
70 ° ® continuous
i ‘e —discrete (overlap:10) °

% Standard deviation

Slice

Fig. 2: Standard deviation/Mean of the 3D cylinder in a 10 cm
diameter ROI placed at the center of the reconstructed image.
The data were acquired using the discrete scan (solid lines)
with overlapped slices of 5 (top) and 10 (bottom) and using the
continuous scan (circles).

Figures 3 and 4 show coronal and sagittal cross sections
from the normal subject scan using the conventional discrete
scan (left) and the continuous scan (right). The images in the
top rows have not been attenuation corrected and the images
in the bottom rows have been attenuation corrected using the
same attenuation map for the both scan modes.

As shown in these figures, in the discrete scan, there is an
increase in noise and visual artifacts at the end of the slices of
each axial FOV indicated by the arrows. In the continuous
scan, these noise amplifications were eliminated and the spine
appears much more clearly, indicating the overall improvement
in S/N.

Fig. 3: Coronal cross sections through a normal subject using
the discrete scan (left) and the continuous scan (right). The
bottom images have been attenuation corrected.

Fig. 4: Sagittal cross sections through a normal subject using
the discrete scan (left) and the continuous scan (right). The
bottom images have been attenuation corrected.



IV. DISCUSSION

The main advantage of the continuous scan is the axial S/N
uniformity as shown in Fig. 2. In addition, the overall
improvements in S/N of the whole body images can be seen in
Fig.3 and Fig. 4. In the continuous scan, all the data points in
the central slices are sampled with all the detectors in the axial
direction hence the detector efficiencies in the axial direction
are averaged. As a result, S/N of the data corrected for detector
efficiencies is slightly improved [10].

In this work, we have implemented continuous 3D whole
body PET scanning using on-the-fly Fourier rebinning. This
implementation has only required a slight modification to the
acquisition software and a small size of acquisition memory
and storage disk not depending on the axial coverage.
Compared to the complete 3D data set, the size of sinogram
data set that is transferred and processed at each bed position
is small enough to be easy to handle. The program can be
easily modified to improving axial sampling by decreasing the
bed motion step and increasing the number of data set. But an
axial sub-sampling is usually unnecessary in clinical whole
body studies, because the axial resolution improvement is not
significant [5].

The one drawback of the small step bed motion is that
there is a dead time introduced between each bed motions.
During the patient scan, it was found that this dead time loss is
less than 8% of total acquisition time, which is not critical in
clinical studies. It may be possible to modify the acquisition
software for the microprocessor to move the bed in a true
continuos motion and to be triggered at sampling time intervals
to synthesize continuos sinograms.

V. SUMMARY

We have implemented the continuous scan for 3D whole
body PET studies using the on-the-fly Fourier rebinning, in
which sinograms are synthesized in the acquisition memory
and transferred and processed after the acquisition at each bed
position. Improved data processing efficiency can make the
continuous 3D whole body scan more practical in routine
clinical studies, while maintaining the axial S/N uniformity
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Scatter Correction for Positron Emission
Mammography

Jinyi Qi and Ronald H Huesman

Abstract—We have previously presented a regularized list mode
maximum likelihood reconstruction algorithm for the positron
emission tomograph that is being developed at our laboratory.
Here we will present a scatter correction method for this algorithm. §&
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The mean scatter sinogram is estimated using a Monte Carlo sim-
ulation program. It is then incorporated into the forward model of
the reconstruction algorithm. With the assumption that the back-
ground activity is nearly uniform, the Monte Carlo scatter simu-
lation need only run once for each PEM configuration. This saves
computational time and makes the Monte Carlo scatter correction
viable in clinical situations. The propagation of the noise from the
estimated scatter sinogram into the reconstruction is theoretically
analyzed. The results provide an easy way to calculate the required
number of events in the Monte Carlo scatter simulation for a given
noise level in the image. The analysis is also applicable to other
scatter estimation methods provided that the covariance of the es-
timated scatter sinogram is available.
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I. INTRODUCTION

A rectangular positron emission tomograph (Fig. 1), dedi- N
cated to imaging the human breast, is under development at our
Laboratory [1]. The tomograph consists of four banks of detec-
tor modules (two banks of>83 modules left and right and two
banks of 3«4 modules top and bottom). Each module consists
of an 8x8 array of 3mmx3mmx30mm lutetium oxyorthosili- small fraction of the radioactivity, so we only need to run the
cate (LSO) crystals. The maximum field of view (FOV) of thélonte Carlo scatter simulation once for each system configu-
system is 9672x72 mn¥. For each crystal, the system dig+ation. For each data set, we can scale the scatter sinogram by
itizes the depth of interaction (DOI) of the photon with threthe ratio of the total events between the Monte Carlo simula-
bits. Each detector is placed in coincidence with all detectorstian and the data set, assuming the scatter profiles are the same.
the other three banks, giving rise to 172 million possible lines dhis saves a large amount of computation time. We also theo-
response (LORs). The system operates exclusively in fully 3Btically analyzed the noise propagation from the Monte Carlo
mode. scatter sinogram into the reconstructed image. Such analysis

The data from the new tomograph is stored in list mode formigtalso useful in determining the total number of events that is
because the total number of detections will generally be far lggguired for the Monte Carlo scatter simulation. Using Monte
than the total number of LORs. We have developed a list mogé@rlo simulation to estimate scatter sinogram is not a new idea.
likelihood reconstruction algorithm for the tomograph [2]. Thé is, however, the application of the method to the PEM recon-
DOI information was explicitly modeled in the forward projecstruction and the theoretical analysis of the noise propagation
tion for each LOR. that make this paper novel.

Here we present a scatter correction method for the list mode
likelihood reconstruction algorithm. The scatter sinogram is es- II. THEORY
timated using a Monte Carlo simulation program. The results
are then incorporated in the forward model of the reconstructién List Mode Likelihood Reconstruction with Scatter Correc-
algorithm. For breast imaging with F-18-labeled deoxyglucose tion
(FDG), we can assume that the FOV is filled with uniform ac-

tivity and that features such as cancerous lesions account for 4liStogrammed PET data are generally modeled as a collec-
tion of independent Poisson random variables. By treating the

This work was supported by the U.S. Department of Health and Human Sgetections in each LOR separately, we can derive the appropri-

vices under grant PO1 HL25840, by the National Cancer Institute under gr _likali ; ; .
R0O1 CA 59794, and by the Director, Office of Science, Office of Biological an%}b IOg likelihood function for list mode data [2]

Environmental Research, Medical Sciences Division of the US Department of
Energy under contract DE-AC03-76SF00098. K N N
J. Qiand R.H. Huesman are with the Center for Functional Imaging, Lawrence .
Berkeley National Laboratory, Berkeley, CA 94720 USA (telephone: 510-486- L(Z) = Z log ZP(%J)%‘ tSi | — Z gjrj, (1)
4695, e-mail{jqi,rhhuesmah@Ibl.gov). k=1 j=1 j=1

Fig. 1. PEM Geometry.



wherex; is mean activity inside thg'" voxel of the unknown  The Monte Carlo simulation program estimates the scatter
image,p(i, j) is the probability of detecting an event from thesinogram by tracing all 511 keV photon pairs randomly gen-
jt* voxel in thei*® LOR, s, is the mean scatter in th&* LOR, erated inside the FOV. For each photon, it first computes the
ix is the index of the LOR of thé!” detectiong; = Y, p(i,j), interaction point based on the attenuation length. Then, it deter-
K is the total number of detections, andis the total number mines whether it is a photo-electric or Compton interaction. If it
of image voxels. is photo-electric, it dumps all of its current energy; if it is Comp-
The maximum likelihood (ML) estimate can be found byon, it computes the energy deposited and the new direction of
maximizing (1). A popular ML algorithm for PET reconstructhe photon using the Klein-Nishima formula, and continues to
tion is the expectation maximization (EM) algorithm [3], [4]trace the photon until the photon has dumped all its energy or
[5]. However, the ML solution is unstable (i.e. noisy) because thveled outside of the system. A photon is detected when the
the ill-conditioness of tomography systems. Hence some foenergy deposited at one detector is greater than a preselected
of regularization (or prior function) is needed to reconstructtareshold. A coincidence event is recorded if both photons are
reasonable image. The prior function used in [2] is a Gaussidetected. The Monte Carlo simulation program histograms sep-

prior whose logarithm is of the form arately the scattered and unscattered (true) events.
5 For each individual data set, the scatter sinogram is then esti-
BU(x) = 5(x —m)'R(x - m). (2) mated by
where is the smoothing parameter, is the estimated mean 3, — fotal events in the data sMC(4)
of the unknown imageR is a positive definite (or semidefinite) total events in Monte Carlo Simulation
matrix.

. oo _ _ _ wheresM¢ is the number of scatter events in tifé LOR in
Combining the I',ke",hOOd funct|.on (1) and the image priofe \onte Carlo simulation. This assumes the scatter fraction
(2), the reconstruction is found as: and profile in each data set are the same, as most scatters are

& = arg max [L(z) — U (z)]. 3) generated from the uniform background.

. o ) ] C. Noise Propagation
For further simplification,R is chosen to be a diagonal ma-

trix, so the EM algorithm can be used to solve (3). The EM Noise is inevitable in the Monte Carlo scatter sinogram. Be-
update equation is [2] cause the Poisson nature of the counting process, the longer it

runs, the less the noise is. This presents a trade off between time
1 €5 and accuracy. In this section, we analyze how the noise in the
9 ( 7 ﬁrjj) + scatter sinogram propagates into the reconstruction.
We denote the MAP reconstruction in (3) a8y, s) to indi-
1 ( €; )2 &7 K p(ik, 7) cate thatr is dependent on estimated scatter sinogéar8ince
T Bry

iﬂ+1 _

J 2

4 Bri; ZN plin, Dl + s; » gy ands are independent, we first focus on noise fremnd as-
T k=1 Sd=L B " sumey noisefree (i.,ey = y = Px + s). We can approximate
wherer;; is the(j, j)th element ofR. Z(y, 8) using a first order Taylor series expansion at the point
§ =s:
B. Estimate Mean Scatter Sinogram using Monte Carlo Simu-
lation :%(ya é) ~ i(yv S) + vsdj(ya S)(.§ - S). (5)

. The sc_atterhcorrectlon metho‘?‘ descrlbsd_ n tl?e pre\t/;o]ys S¢Hiis approximation is similar to that presented in [6]. From (5),
tion requires the mean scatter sinogram being known before the e the following expression for the covariance of noise in

rgconstructlon starts: For convephonal PET s_ystemfs, asc reconstruction caused by the noise in the estimated scatter
sinogram can be estimated by single scatter simulation, decgﬁ]1

volution of emission sinogram, dual energy windows, or Monte ogram

Carlo methods. Most analytical scatter estimation methods re- S(&) ~ Vi (y, $)5(3)[Vaa(y, s)]' (6)
quire fitting an computed scatter sinogram to the tails of the

emission sinogram that consist of pure scatter events. Thisyere 5:(3) is the covariance matrix of the estimated scatter
not practical for PEM geometry as the whole FOV is filled witRjnogram.

activity. Therefore, we adopt the Monte Carlo method here. 1o computeV,i(y, s), we follow the idea presented in [6].

The Monte Carlo scatter simulation requires both emissi@Qe restrict our attention to the situations where the solution of
and attenuation maps. Generally they are obtained from an |(ry? satisfies

tial reconstruction without scatter correction. One advantage o

breast imaging with FDG is that the background is quite uni- . 0 .
form. If we assume that whole FOV is filled with uniform ac- =~ — a—xj [L(ylw, s) - BU(x)] z-z(y.sy J=1.., M
tivity and that features such as cancerous lesions account for (7

a small fraction of the radioactivity, then we only need to ruWhile this assumption precludes inequality constraints, it should
the Monte Carlo simulation once for each system configuratiomork fine here because of the uniform background. Differentiat-
This will saves a large amount of computational time. ing (7) with respect ta; by applying the chain rule and solving



the resulting equation, we get [6] 950
R -1 r
Viily,s) = {~VelLyle.s) — AU@)] lpay.s) | 00
Vs [L(y|z, s) — BU (z)] |:c=ﬁs(y,8) (8) i i
u 850
where the(j, k)" element of the operatdv ., and
i

. 82
o 800
the (j,1)"" element of the operatdv ., is #2381' .
From (1) and (2), we can derive "
Vo [L(y|z, 8) — U ()]
= P ding | pti | P+ 0 g3
650
and
s L — — P/ . —7% .
Vas [L(y|z, ) — fU(x)] = P diag [(P:i + s)?}
Then
Yi -1
s 7 = P di ___ Y%  Ip
Vsi(y, s) { d1ag[<P:&+s+T)?] +ﬂR}
P diag | — 2 _|. o
e {(Pﬁi—i-s)?] 9)

Substituting (9) into (6) results in

r q -1
. . Yi
¥ = P d — | P R
@ { e | Parsinz) T }
. Yi : Yi (b)
P’ ding [7} 5, diag {7] P
(P T+ 5)12 s (P T+ 3)% Fig. 2. (a) Reconstruction without scatter correction. (b) Reconstruction with

r ) B -1 scatter correction. The images are top view slice (upper left), front view
P diag % P+ 3R (10) slice (Iower left), and side yie\_N_ince (lower right)'thr_ough the center voxel.
_(P:L' + s+ r)i | Images in (a) and (b) are individually scaled as indicated by the gray level
bars.

In generalz is a slightly blurred version af, so the projec-
tion Pz + s is approximately equal to the mean of the data,
Therefore, we can simplify the above expression to It shows that the noise from the scatter sinogram is equivalent
to an increase of the noise in the data by a factar $fa§i /i

2
] P[F+ 3R], (11) o /i is equal to the scatter fraction of thé LOR divided by

3i
=2
1

the ratio between total number of detection in the Monte Carlo
simulation and the total number of detection in the data. For
where F = P’ diag |1 | P is the Fisher information matrix €xample, if the average scatter fraction is 30%, and the Monte
andr, i th variance of,. . (11 e covarance mauxC 10 STUSLon 192 50 mes a8 may eveis s e e e
of the noise in the reconstruction that is propagated from tl . .

propag sinogram will be about 1%. Equation (13) can be used to deter-

estimated scatter sinogram. ine the number of events required in the Monte Carlo simula
The covariance of noise in the reconstruction caused by t{ﬁé : > requl
ion and to design better simulation strategy.

Poisson noise in the data is [6]

g
Y(#) ~ [F + BR] ' P’ diag [

Shoisson () A Vya“c(@)Cov(y)[Vyﬁc(y)]’ IIl. SIMULATION RESULTS

[F+ BR]|"'F[F + BR)™'. (12)  Insimulation we assume a subject weighing 70 kg and an in-
jection of 1 mCi of FDG, which is uniformly distributed within
Adding (11) and (12), we get the covariance of the total noigge body. This activity density within the 72 72 x 96 mn?®
field of view and an imaging time of 60 s gives about 16 million
P[F + BR]™! disintegrations within the imgging volume. .
The Monte Carlo simulation uses the appropriate energy-
(13) dependent cross sections for the interaction of photons in water

2

Y 1
= 4+ =
Y; Yi

Siotal(Z) = [F + SR]"' P’ diag




(in the field of view) and in LSO detector. The average detection
efficiency is about 13% for an energy threshold of 270 keV. Of
all the detected events, there are about 35% unscattered events,
32% events scattered in the FOV, and 33% events scattered in
the detector (not scattered in the FOV).

Fig. 2 shows some example reconstructions of a simulated
flood source with and without scatter correction. The images
shown are three orthogonal slices through the center voxel: top
view slice (upper left), front view slice (lower left), and side
view slice (lower right). The reconstructed image without scat-
ter correction (Fig. 2a) shows brighter at the center of FOV and
darker at the corners, especially in the front view slice. The
scatter corrected image (Fig. 2b) shows more uniform activity
distribution. Note the gray level maps in Fig. 2a and Fig. 2b are
different. Here we have only corrected for the scatters in the
FOV. We are looking for a better way to deconvolve the scatters
in the detector as they are more localized.

IV. CONCLUSION

We have implemented the Monte Carlo scatter correction
method for the list mode likelihood reconstruction algorithm
for the PEM and shown some results based on computer sim-
ulations. For breast imaging with FDG, we can assume that the
FOV is filled with uniform activity and that features such as can-
cerous lesions account for a small fraction of the radioactivity.
This specific application of PEM allows us to run the Monte
Carlo scatter simulation only once for each scanner configura-
tion. The scatter sinogram for each individual data set can then
be estimated using the total number of detections. This saves a
large amount of computation time.

We also theoretically analyzed the noise propagation from
the estimate scatter sinogram into the final reconstructed image.
The results show that the noise propagated from the estimated
scatter sinogram is equivalent to increasing the noise variance
in each LOR by a factor of + o2 /7;. If we assume the scatter
fraction for each LOR is the same, then this factor is a con-
stant for all LORs and it provides a easy way to calculate the
required number of events in the Monte Carlo scatter simulation
for a given noise level in reconstruction. This noise analysis is
applicable to other scatter estimation methods provided that an
estimate of the covariance of the estimated scatter sinogram is
available.
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Abstract— We describe an approach to fast iterative re-
construction from fully 3D PET data using a network of
PentiumIII PCs configured as a Beowulf cluster. To facili-
tate the use of this system, we have developed a browser-
based interface using Java. The system compresses PET
data on the user’s machine, sends this data over a network,
and instructs the PC cluster to reconstruct the image. The
cluster implements a parallelized version of our precondi-
tioned conjugate gradient method for fully 3D MAP image
reconstruction. We report on the speed-up factors using the
Beowulf approach and the impacts of communication laten-
cies in the local cluster network and the network connection
between the user’s machine and our PC cluster.

Keywords— 3D PET, Beowulf cluster, distributed comput-
ing, iterative reconstruction

I. INTRODUCTION

Iterative reconstruction of clinical PET images using sta-
tistically optimal algorithms can require an hour or more
of computation on a single-processor computer for fully 3D
data sets. Dramatic reductions in computation time have
been achieved by converting fully 3D data sets to 2D us-
ing rebinning algorithms and then using iterative 2D re-
construction methods [1]. Further reductions have been
achieved using the ordered-subsets EM (OSEM) algorithm
which can achieve acceptable results in just a few passes
through the data. However, these speed-ups are achieved
at a price: the rebinning methods, even if exact for true
line integrals, are unable to accurately model the true phys-
ical response of the scanner. Similarly, the OSEM method
never optimizes the likelihood objective function and the
results can be highly dependent on the number of subsets
and number of iterations that are used. In our work [3],
[2] we have concentrated on using convergent algorithms
to compute maximum a posteriori (MAP) or equivalently
penalized-ML solutions to the PET reconstruction prob-
lem. The more accurate models that we use with fully 3D
data sets have been shown to improve image resolution [3]
but inevitably lead to longer computation times.

Our approach to reducing reconstruction time is to use
rapidly converging methods such as the preconditioned
conjugate gradient method. Further reductions can be
obtained using multiprocessor computing. Previously we
have used multithreading methods to parallelize the code
across multiple CPUs in a single symmetric multiproces-

This work was supported by the National Cancer Institute under
Grant No. R01 CA59794 and the National Foundation for Functional
Brain Imaging.

sor (SMP) server. This arrangement is attractive since the
servers typically have shared memory and hence there is
minimal overhead incurred in distributing data across the
processors. In tests with a four processor server, we were
able to achieve speed-up factors of approximately 3.4 rel-
ative to a single processor. Unfortunately, the number of
processors in standard servers is usually limited to four and
the cost is high relative to single or dual processor systems.
For this reason we have recently investigated the use of a
Beowulf PC cluster that allows us to use a large number
of low cost systems to achieve substantial speed-up relative
to a single computer. Vollmar et al [5] recently reported
the use of a PC cluster for 3D PET reconstruction. Their
approach differs from that described here in that the for-
ward and backprojection were based on on-the-fly compu-
tation rather than a precalculated system matrix. Similarly
Labbe et al [6] present a set of forward and backprojection
operators suitable for cluster and parallel computing but
again these are based on on-the-fly computation.

The Beowulf cluster is simply a network of Unix or Linux
workstations. For the purposes of code parallelization, the
cluster is configured with a head-node that controls the
program and a set of worker-nodes that handle processes
spawned by the head node. The difference between the
Beowulf cluster and a multiple CPU server is that the for-
mer do not have shared memory, and data must be trans-
ferred via a local ethernet between processors. This is of-
ten the bottleneck in performance of these clusters and of
particular importance in PET image reconstruction where
the data sets and image volumes are large. Here we re-
port on our progress using a combination of multithreading
and distributed computing on a Beowulf cluster consisting
of 9 dual 933MHz PentiumlIII computers connected via a
100mb/s switched ethernet.

A second goal of our work was to decouple the computer
used for reconstruction from that used to acquire data. To
do this we have developed a web-browser based interface
to our distributed computing code using Java. Thus data
can be processed using the cluster from any computer con-
nected to the Internet. While data transfer may be slow for
standard Internet connections, the availability of Internet2
connections at many research facilities make this approach
viable. We report on an experiment we have performed by
reconstructing data residing on the PET system computers
in the Nuclear Medicine clinic at UCLA using the cluster
at the Signal and Image Processing Institute at USC.



II. METHODS
A. MAP Image Reconstruction

We use a MAP estimation algorithm to reconstruct PET
images [3]. In this approach, the data are modeled as:

y=Px+T+5 (1)

where y is the mean of the data, x is the source distribu-
tion, T is the mean of the randoms, and s is the mean of
the scattered events. P is the system matrix describing the
probability that an event is detected, which we factor as:

P= PnormelurPattnPgeom (2)

where Pgeom is the geometric projection matrix describing
the probability that a photon pair reaches the front faces of
detector pair in the absence of attenuation and assuming
perfect photon pair colinearity, Pplar models photon pair
non-colinearity, inter-crystal scatter and crystal penetra-
tion, Pagen contains attenuation correction factors for each
detector pair, and Pyorm is a diagonal matrix containing
the normalization factors.

Reconstructions are computed as the maximizer of a pos-
terior probability equal to the sum of the log-likelihood of
the data, y, conditioned on the image, x, and the log-prior,
which has the form of a Gibbs energy function:

In p(ylx) = Xy +viln(@)}
- Ej ZkeNj ki V(z; — xr) (3)
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where V' (z) is the potential function.

As in our previous work on PET image reconstruction, a
preconditioned conjugate-gradient algorithm was used for
optimization. In particular, the following preconditioned
Polak-Ribiere form of conjugate gradient method was used.

R B N I 0 (4)
s = g 4 gDl (5)
g Cn g (6)
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The PCG algorithm is initialized with s(© = d(© and
iteratively computes the conjugate directions. It it neces-
sary to check that s(®) is an ascent direction. In the case
that s g(™ <0, s(® is a descent direction and the algo-
rithm is reinitialized with s(®) = d(™. The step size, a(™,
is computed at each iteration using a Newton-Raphson line
search to maximize the objective function. We incorporate
a positivity constraint by using a bent-line search as we
describe in [3].

Here we report on application of this algorithm, using
the PC cluster, to data collected in 3D mode using the
CTI ECAT HR+ scanner. The data from the HR+ scan-
ner was a standard 3D dataset rebinned with a span of 9
and a maximum ring difference of 22. There were 239 sino-
grams each of size 288 (elements) by 144 (angles) giving
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Fig. 1. Architecture of the PC cluster.

a total emission sinogram size of 40 MB. Attenuation cor-
rection requires a second sinogram of the same size, thus
the total data for a single frame is on the order of 80MB
in size. These file sizes are important when considering
the impact of reconstruction via a browser over an inter-
net connection. The other files that are required are ei-
ther small (such as the factored normalization file) or can
be stored on the cluster (such as the forward projection
matrix, P). Voxel sizes used in our reconstructions were
2.25mm x 2.25mm x 2.42mm for the HR+ and images were
of size 128 x 128 x 63 so that the image is of size 4MB
when saved as 4-byte real values. Thus, transfer times for
the reconstructed images back to a remote user are small
compared to those for sending the data to the cluster.

B. Beowulf Clusters and Code Parallelization
B.1 System setup

We built a Beowulf cluster consisting of one master node
and eight worker nodes. FEach worker node is a rack-
mounted dual processor Intel Pentium IIT 933 MHz sys-
tem with 512MB of RAM and 20GB of disk space. The
master node is also a rackmounted dual processor Intel
Pentium IIT 933 MHz system, but has 1GB of RAM and a
36GB hard drive. The master node has dual network inter-
face cards, allowing the cluster to have a private network
but still be accessible from the Internet. The configura-
tion of the cluster is shown in Fig 1. We configured the
system with the Linux operating system (RedHat v. 7.0;
Linux kernel version 2.4). We also installed the Local Area
Multicomputing (LAM) 6.5.1 version of the Message Pass-
ing Interface (MPI) software onto each node. MPI is an
open standard for communicating data between computer
processes; LAM is an implementation for use on clustered
computers and provides a programming environment that
is portable to other architectures.

B.2 Code parallelization

Analysis of our algorithm’s performance on a single com-
puter revealed that two operations dominated computa-
tion: the back projection of the sinograms into image
space and the forward projection of the image into sino-
gram space. Computation of the gradient in (6) requires a
forward and back projection; a second forward projection



is required prior to doing the line search to compute (™
in (4). We distributed the processing of these key oper-
ations across the cluster. Ignoring communication costs,
we are able to achieve roughly a factor-0.75 - N speed-up
on the forward and backward projections using N nodes
of the cluster. This number is less than N because the
workload is not perfectly balanced across the processors,
but still represents a dramatic improvement in computing
time. Were we to communicate the sinogram data during
the iterations of the algorithm, the high cost of passing
these results among the nodes would rapidly consume the
gain in performance. Fortunately, we can decompose our
problem such that the slave nodes never need to receive or
transmit sinogram data once the iterations have begun.

The forward and back projection operators are both lin-
ear transformations, and represented as a factored system
matrix as described above. During back projection, each
element of the image may be a function of several elements
of the sinograms. Each sinogram is transformed by the sys-
tem matrix to contribute to the reconstructed image. We
can partition this transformation based on arbitrary sets
of sinograms, apply the system matrix separately to these
sinograms to obtain their contribution to the reconstructed
image, and then sum these partial results to obtain the en-
tire transformation. In our distributed implementation, we
assign each node a range of sinograms for which it is re-
sponsible. The node keeps updated versions of the data for
these sinograms, and backprojects them into imagespace
when requested by the head node. These results are sent
back to the head node, where they are combined into a
single image.

The forward projection problem can also be decomposed
into functions producing individual sinograms; however,
each operation will still require the full image that is being
forward projected. Fortunately, the communication cost of
transmitting images to each node is relatively small com-
pared to the cost of transmitting sinogram data or per-
forming the reconstruction computation. During forward
projection, the head node broadcasts the image to each
node; the nodes are responsible for producing the same
sinograms that they will use during backprojection. Dur-
ing the iterations, the nodes generate any sinogram data
they will need, and thus do not need to communicate their
sinogram data to other nodes of the cluster. We distributed
some additional computation to the nodes to eliminate the
need to send any sinogram data to any other nodes; the
effects of this distributed processing are small compared to
the gains from distributing the projection operations.

A second layer of parallelization is used on each node,
as each has dual processors. The projection problems are
again decomposed based on sinograms, and two threads
are spawned on each node to handle the projections. In
this case, we achieve better load balancing as the node
can dynamically assign sinograms to the threads as soon
as they have finished processing. The computation of the
image prior (3) is also multi-threaded on the head node.
This operation may be distributed to the cluster in future
work; however, this would require broadcasting of image
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Fig. 2. Architecture of the web interface to the 3D PET reconstruc-
tion program. The user supplies the data files and parameters
to the java applet. The applet compresses the data files and
submits a reconstruction request to the server. The server de-
compresses the data files, starts the reconstruction and sends the
reconstruction progress to the applet, which displays it in the
client browser. When the reconstruction finishes the server sends
the reconstructed image to the applet which displays the results
in the client browser.

vectors and the cost of communication may outweigh the
benefit of distributed processing.

The projection routines are also used during initializa-
tion, so improvements to them will reduce start-up costs.
Additionally, the geometry matrices used in projection can
be hundreds of megabytes in size, and are needed on each
node. These matrices are used repeatedly for a particular
scanner and voxel size, thus we store copies of these files
on the local hard drive. This reduces the network burden
further.

C. Java Browser-based Interface

We developed a Java based interface to the 3D MAP re-
construction program that allows users across the Internet
to run reconstructions on our Beowulf PC cluster. The
interface consists of two components, a client module and
a server module. Fig. 2 illustrates the architecture of the
interface.

The client module was implemented as a Java applet
and can run on standard web browsers. The user supplies
the data files (emission file, normalization file, etc) and
parameters (number of bed positions, number of frames,
etc) for the MAP reconstruction and submits a reconstruc-
tion request. The client module collects the parameters
and data files for the reconstruction and sends them to
the server. The server module was implemented as a Java
servlet. It receives the data from the client and starts the
reconstruction. Text messages describing the reconstruc-
tion progress are sent to the client. The applet displays
the reconstruction progress in the browser. When the re-
construction finishes the applet receives the reconstructed
images and statistics about the reconstruction process.

The data sizes used in 3D PET reconstructions are large.
The data size we used for HR+ reconstruction was 8OMB
per frame. To reduce transfer time the applet compresses
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Fig. 3. Speed increase to the iterative portion of reconstruction code
for different sized clusters.

the data files before sending the reconstruction request to
the server side. The compressed data is transferred over
the network and received by a servlet on the cluster. The
servlet decompresses the data before starting the MAP re-
construction.

D. Network Connections

To evaluate performance over Internet2, the PC-cluster
server was connected through a 100mb/s network to the
University of Southern California backbone to Internet2.
The client computer containing the data was similarly con-
nected through the UCLA computer network. The link be-
tween USC and UCLA is part of the California Research
and Education Network-2 (CalREN-2). CalREN-2 is a
high-performance advanced-services network with a min-
imum communication bandwidth of 622Mbs.

III. RESULTS

We performed reconstructions on our cluster using dif-
ferent numbers of nodes to assess the benefit of using dis-
tributed processing. Figure 3 shows the performance gains
achieved on both the initialization and the main loop of the
program for reconstruction of HR+ 3D data. The chart
show that we achieved better than N/2 increases in pro-
cessing speed, where N is the number of nodes in the clus-
ter, for up to 8 nodes. Our performance begins to flatten
with the 9th node, which reduced the iteration time of the
reconstructions by a factor of 4.36. This represents a signif-
icant performance gain over using a single dual-processor
machine. Figure 4 shows the key components of a recon-
struction iteration for the HR+ data as computed with dif-
ferent sized clusters. Forward and back projection clearly
dominate the computation time when the algorithm is per-
formed on a single node. As the number of nodes increases,
the times for these operations are greatly reduced. When
the ninth node is added to the cluster, the line search re-
quires almost as much time as the forward and back pro-
jection. This figure indicates that to achieve further gains
by adding more nodes we must either distribute additional
processing or perform better load balancing.

Additional overhead for data transfers over Internet2

Allocation of iteration time for different cluster sizes
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p— M other processing
| | Eimage communication |
M gradient
250 1| Oline search L
Oback projection

200 4+— W forward projection lag | |

— Eforward projection

L LEFEEE

Nodes

Seconds

Fig. 4. Usage of computing time in a single iteration of reconstruc-
tion. Forward projection lagtime is the difference between when
the head node finishes its portion of the forward projection and
when all nodes are finished; some of this time may be used by
the head node to perform additional computation.

were minimal. For example transfer of the combined trans-
mission and attenuation correction file (80MB) in uncom-
pressed format took 54 seconds. from UCLA to USC.
Typically we can achieve 50-75% compression using the
compression applet which will reduce the transfer time to
between 27 and 13.5 seconds. However, the time taken
to compress the two files is approximately 2 minutes on
a 450MHz UltraSPARC workstation, which exceeds the
transfer time required for the uncompressed file. For sys-
tems with slower Internet connections, the trade-off be-
tween compression and transfer times will be different and
use of compression will be appropriate. This preliminary
study demonstrates the feasibility of using remote PC-
clusters for image reconstruction , particularly for PET
sites with access to fast networks. Furthermore, the cluster
presents a relatively low-cost approach to achieving prac-
tical reconstruction times in 3D iterative PET reconstruc-
tion.
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Object Dependency of Resolution and
Convergence Rate in OSEM with Filtering

S. Mustafovic, K.Thidemans, D. Hogg and P. Bloomfied

Abstract--. Convergence properties of the Maximum
Likelihood Expectation Maximization (MLEM) algorithm
depending on the activity distribution in the field of view is
extended to MLEM/Ordered Subsets EM (OSEM) where
different types of regularization are applied.

It will be shown that although different parts of the image
converge at different rates, pure and post filtered
MLEM/OSEM achieves reasonably uniform resolution.

By contrast, inter iteration filtering (IF OSEM) with smoothing
filters, such as Gaussian, renders images with varying spatial
resolution that is dependent on the surrounding activity.
Furthermore, a similar effect is noticed on images reconstructed
with MAP using a Gaussian root prior.

We conclude that resolution non-uniformity is entirely due to
thefiltering.

Index Terms—iterative reconstruction, OSEM, convergence,
resolution

I. INTRODUCTION

The major advantage of iterative over analytical algorithmsis
the option of emission and detection process to be accurately
modelled [11]. Furthermore, iterative algorithms allow
dtatistical noise models to be included as wel as
incorporation of prior knowledge. Also, provided that some
kind of regularisation is used, images obtained with iterative
algorithms are more acceptable.

On the other hand, filter-back projection (FBP) as a linear
algorithm produces images which have nearly spatially
invariant, object independent resolution.

Pure MLEM/OSEM produces images which possess
unacceptable noise properties as the iteration number
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increases. That is why regularisation is needed.  Different
types of regularisation can be used such as early stopping,
based on different criteria [9], inter-iteration filtering (IF)
where filtering is used in between the iterations [6,10], post
filtering where one keeps on iterating up to the convergence
after which post filtering is applied [12] as wel as
incorporating penalty term in the objective function leading to
MAP agorithms[1,7,8].

Defining criteria for stopping the iteration before the image
becomes too noisy is very difficult since different parts of the
image converge at different rates leading to non-uniform and
object dependent resolution [1]. To avoid this problem post
filtering can be used after the convergence is achieved, but
this leads to long reconstruction times.

Previoudly it was shown that standard regularisation penalties
produce non-uniform resolution even for space-invariant
tomographs [2] and a modified penalty was proposed that
improved resol ution properties.

This abstract concentrates on the non-uniform convergence
properties and the influence of the activity distribution
present in the image.

Even though some people desire and expect non-uniform
resolution based on the idea that high-counts regions provide
higher resolution as mentioned in [2], there are applications
where uniform resolution or at least object independent
resolution is of crucial importance. One obvious application
would be to dynamic PET studies where there are different
activity distributions in different frames and hence different
resolution properties. Also, for cross-patient studies or single
patient studies taken over a period of time, the same
resolution properties across theimage are desirable [3].

Post and inter—filtering as methods of regularising an image
were compared previoudy [6] and it was concluded that the
coefficient of variation (CV) and contrast of the inter-filtering
was dlightly better. However, that analysis did not account
for the distribution of the radioactivity in the image itself.
Our experiments show that smoothing filters, such as Metz
and Gaussian, incorporated directly into reconstruction either
as the part of the image updating process (inter-filtering) or
as a prior (MAP with Gaussian root prior) influence the
resolution properties of the object surrounded with a large
activity. Images obtained in this way have spatially varying
resolution.

Section | reviews the algorithms used and the methods are
presented in Section Il. The experimental results are



presented in Section Ill. Finaly, we conclude with a
discussion.

. ALGORITHM DESCRIPTION

Images for this study were reconstructed with OSEM through
various schemes. OSEM requires projections to be organised
into a number of subsets. The subsets were chosen as shown
in [6]. It is worth mentioning that one pass through all the
subsets is considered one full iteration. The number of
subsets used was fixed to 10 subsets for all reconstructions.

A uniform image as a sarting point was used in all
experiments. In the case of post-filtering plain OSEM needed
to be run to the convergence after which images were filtered.
The convergence point was determined by the stability of
resol ution/coefficient of variation.

Inter-iteration filtering incorporated filtering directly in the
reconstruction process where the filtering process itself was
applied at different intervalsi.e. filtered every 5 subsets, every
10 and every 20.

Additionally, maximum a posteriori (MAP) with a Gaussian
root prior was implemented where it was assumed that
images are locally smooth and as such pass unaltered by
Gaussian filter. Gaussian outputs a “weighted average’ of
each pixel's neighbourhood, with the average weighted more
towards the value of the centra pixels and therefore
providing gentler smoocthing than the one obtained with
simple averaging. The prior will only be applied if the pixel
values possess huge variations. The approach is similar to
median root prior but differs in that instead of smoothness,
privilege is given to those solutions, which are roots of the
median [8].

The reconstructions were implemented using the object-
oriented software library PARAPET [15,16].

1. METHODS

In the experimental study we have used simulated and real
data. The real data were obtained from a HIiDAC, 3D small
animal PET scanner, which has about 1mm resolution.

The camera consists of four planar, rectangular detector
banks each consisting of 8 HIDAC modules, rotating
backwards and forwards every 6sec over 180°.

The data acquired in list mode was rebinned into 0.5mm bins
where the axial field of view was set to 100mm and diameter
to 60mm. The maximum acceptance angle was 59.03°
discretized in 15 steps. We have used 160 views for the
rebinning, resulting in the projection data of size 15 x 160 x
161. Data were reconstructed on a grid 161 x 161 x 244
cubic voxels of side 0.5mm.

The smulated data was forward projected and the resulting
sinograms were used for reconstruction purposes. The sizes
and angles were the same as for the experimental data.

The effects of attenuation, scatter or noise were not simulated
so that only resolution effects could be examined.
Furthermore, we have simulated two cylinders and two line
sources placed such that onelied in between the cylinders and
the other one is placed a hit further apart. The line sources
were longer than the cylinders.

The real data consisted of a 1h scan of a germanium cylinder
(external length 7.2cm and source length 6.2 cm with
external diameter 3.6cm and source diameter 3cm) with a
10cm long aluminum oxide ( Al,Os) filament line source
aligned toit.

These configurations are similar to the 2D case in [1], to
illustrate the effect of convergence of FWHM by surrounding
activity (Fig. 1a).

Resolution was measured by FWHM of the line source where
two values were recorded, one obtained from the part of the
line source surrounded with the activity and the other one
from the opposing end where there was no surrounding
activity present.

A Gaussian smoothing filter with FWHM = 2mm was used in
all experiments. This filter was incorporated directly into the
recongtruction either after the normal OSEM image update
(inter filtering) or as a prior (MAP with Gaussian root prior)
or applied to the converged images reconstructed with pure
OSEM (post filtering).

[1l. EXPERIMENTAL RESULTS

The analysis of the inter filtered case showed that the part of
the image sandwiched between the two cylinders failed to
achieve the same resolution as the one obtained in the post
filtered case (Fig.1b and 1c). This indicates that application
of inter filtering with smoothing filters renders images with
gpatially varying resolution. The more frequent the filter is
applied the bigger the difference in the resolution properties
between the two parts of the line sources (Fig. 2a). As the
frequency of filtering is decreased the effect is less
pronounced and the resolution properties approximate to the
nonregularized case (Fig. 2b).

Furthermore, images reconstructed with MAP with Gaussian
root prior showed that the same effect, i.e. non-uniform
resolution, is present (Fig. 1d)

We conclude that these resolution non—uniformities are due
exclusively to the filtering with smoothing filters (IF OSEM)
or the interaction between likelihood function and the prior
for MAP. Moreover, resolution properties depend on the
object in the case of inter-iteration filtering whereas this
effect is not present in the case of post-filtering. .

Similarly, smulations of the line source and the two cylinders
placed this time further apart did not show this effect. Hence
showing the object dependency once again.

Furthermore, the real data was reconstructed using 3D pure
and post-filtered OSEM, IF OSEM where filtering was
performed as explained in section Il. Once again it was



confirmed that smoothing filters incorporated in the
reconstruction produce images with gpatially varying
resolution (Fig. 3).

V. DISCUSSION

We have investigated object dependency and the convergence
rate in the pure and regularized OSEM (post/inter filtering)
as well as MAP with the Gaussian root prior. It was found
that once a smoothing filter is applied either as a part of
image updating process (IF OSEM) or in MAP the obtained
images have spatially varying resolution depending on the
activity distribution in the image.

Figures 2a, 2b give a clear intuitive explanation for this
behavior in the interfiltering case. There are two competing
effects on the FWHM. The normal OSEM update decreases
the FWHM, while the filtering step increases it. At the
convergence, the balance between these two updates is
influenced by two factors: the frequency of filtering (higher
the freguency, higher FWHM) and the convergence rate of
pure OSEM in that point (dower convergence, higher
FWHM). This latter factor gives an interesting connection
between the object dependency of the local convergence rate
and the resolution obtained in an inter filtering case. It is
clear that this connection will also exists when filtering
occurs after every subitertaion, which in the case of 1 subset
isthe original EMS algorithm. It isalso clear that exactly the
same behavior will happen in any algorithm, i.e. with
different update steps than (0S) EM, that uses interfilterinng.
This is because any algorithm will have different local
convergence rates depending on surrounding activity. So we
generally conclude: for any iterative algorithm, interfiltering
with spatially invariant smoothing filtering will lead to object
dependent resolution.

This situation is very similar to the case analyzed in [4].
Instead of intefiltering, there, a (smoothing) filtering term is
added to the likdihood. It was found that having a spatially
invariant penalty term leads to object dependent (and hence
non-uniform) resolution. In this case, no obvious connection
with the convergence rate is present. Indeed, the analysis in
[4] is independent of the algorithm used to find the MAP
maximum. In contrast, for interfiltering, the object
dependency will vary if a different algorithm is used, as the
local convergence rate would be different.

It is likely that, similar to the MAP case [3,4,5], uniform
resolution could be obtained in an interfiltering case by
adapting the filter locally. We plan to investigate this in the
future. To do this, the fixed-point equations for EMS (and its
variations) will have to be analyzed. This is worthwhile as we
found that when no surrounding activity is present,
interfiltering gives a better resolution vs. noise (measured as
CV in a uniform region) trade-off compared to postfiltering
(data not shown but see also [6]).

At the moment, it is unclear if a filtering approach is better
than using a penalty term. To investigate this, we included
some results on MAP with a Gaussian root prior. Although
this agorithm does not correspond to maximizing an
objective function (there is generally no penalty term
associated with aroot prior), we used this algorithm because a
clear connection exists with the filter. We were surprised to
see (Fig. 1d) that the FWHM obtained by this algorithm is a
lot smaller than in the case of pogtfiltering (and hence
interfiltering). Obvioudly, this will depend on the choice of
beta, and one would have to look at the corresponding noise
properties. We |leave this for future work.
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Figure 1a. Resolution vs. subiteration number (nonregularised OSEM) for two
parts of the line source (part of the line source aligned with a cylinder — triangles,
and part of the line source on its own — squares)
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Figure 1b. Resolution vs. subiteration number (post filtered OSEM) for two
parts of the line source (part of the line source aligned with a cylinder —triangles,
and part of the line source on its own — squares)
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Figure 1c Resolution vs. subiteration number (inter filtered OSEM) for two parts
of the line source (part of the line source aligned with a cylinder —triangles, and
part of the line source on its own — squares)
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Figure 1d. Resolution vs. subiteration number (MAP with Gaussian root prior)
for two parts of the line source (part of the line source aligned with a cylinder —
triangles, and part of the line source on its own — squares)
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Figure 2a. Resolution vs. subiteration number for inter-filtered OSEM where
filtering was applied twice in every full iteration
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Figure 2b. Resolution vs. subiteration number for inter-filtered OSEM where
filtering was applied every four full iteration
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.  INTRODUCTION

Spiral Computed Tomography (CT) with area detectors is
of increasing interest for scanning large volumes in a short
time and achieving isotropic resolution. When the cone-angle
is large, exact reconstruction algorithms are needed which go
beyond approximate solutions.

A major problem of spiral cone-beam CT is the so-called
long-object problem, which concerns the exact reconstruction
of a region-of-interest (ROI) of a long object using projection
data of a pure spiral scan covering the ROI and its immediate
vicinity only. This problem has been recently solved with
different approaches: the Virtual Circle method [1], the Zero
Boundary method [2], and the Local ROI technique [3].
Although all these methods are theoretically justified, they
have different approaches and therefore some differences in
numerical behavior and in effectiveness are expected.

The purpose of this study is to evaluate the performances of
these algorithms regarding image quality and practicability.
Here, we concentrate on Filtered-Backprojection-type (FBP)
algorithms. A comparison between Radon- and FBP-based
algorithms for the Local ROl method can be found in [4].
Image quality is determined on the basis of image artifacts,
spatial resolution and noise properties. For practicability, the
computing time as well as the overscan range required for the
ROI reconstruction (i.e. the z-extension of the spiral below and
above the ROI) are compared.

[1. DescRIPTION OF THE METHODS

The reconstruction of a short-object from axially truncated
projections can be performed with an exact (or quasi-exact) 3D
Filtered Backprojection (FBP) approach, as proposed in [5][6].
The method is based on the generalization of Grangeat's
formula for calculating the Radon data and requires the cone-
beam projections to be measured in some region B on the
detector which is bounded by the projection of the upper and of
the lower turn of the spiral. A straightforward implementation
of the filtering step is the 4-step algorithm, which consists in
performing some line integral derivatives on the cone-beam
projection, backprojecting them on a virtual detector (which is
large enough to cover the cone-beam projection of the whole
object) and applying a final derivative filter. Alternatively, the
filtering step can be carried out by convolution with an 1D

ramp filter plus some boundary correction term involving only
data at the boundaries of the region B [5][6] (these boundaries
will be referred below as the mask boundaries). The 4-step
algorithm is the basis of the Local ROl method whereas the 1D
ramp filter approach is the basis of the Virtual Circle and of
the Zero Boundary methods.

A. The Virtual Circle Method (VC)

One solution to the long-object problem is to add two
supplementary circle scans at the bottom and at the top of the
ROI [7]. However, this is not practical for medical imaging. It
can be shown that the particular projection data of the circle
scans needed for the reconstruction of the ROI can be
synthesized from the data of the spiral scan. Therefore a real
measurement of the circle scans is not necessary and the
synthesized data are regarded as virtual data.

B. The Zero Boundary Method (ZB)

Since only the data on the boundaries of the region B
cause troubles in the long-object problem, the Zero Boundary
method treats them separately. The image to be reconstructed
is expressed as the sum of two partial images. The first image
can be reconstructed such that its cone-beam projections are
equal to the data on the mask boundaries, exploiting the
property that each point in the field-of-view belongs to one and
only one PI-line. The second image can be reconstructed from
the projections with zeroed mask boundaries, using a standard
3D FBP with ramp filtering and cone-beam backprojection.

C. TheLocal ROl Method (LR)

In the Local ROI technique [3], the Radon derivative data
are grouped on @-planes (meridian planes) containing the z-
axis. The Radon derivative data on different ¢-planes are
computed for different portions of the object, which are called
local ROIl's. Each local ROI is defined by the parallel
projection of the spiral scan path onto the corresponding ¢
plane, so that the contributing cone beams are not
contaminated by object information outside the local ROI. A
(global) ROI consisting of the intersection of all local ROI's
can be reconstructed without interference from the parts of the
object outside the ROI. The Local ROl method was formulated
as a Radon-based algorithm [8], as well as an FBP-based 4-
step algorithm [9][10].



[11. SIMULATION EXPERIMENTS

Image quality is evaluated with ssmulated projection data.
The scanner geometry is based on standard parameters of
medical scanners: the radius of the focus path is 57 cm and the
detector is at the distance 43.5 cm from the z-axis. We take
1056 projections per rotation. We choose a table feed value of
12.8 cm per turn, which corresponds to a full cone-angle of
7.2°. For this large angle, approximate algorithms usually do
not perform well any more.

Different phantoms are used for this study: a 3D
anthropomorphic Head Phantom [11] for the investigation of
artifacts, simulated ideal delta points for the evaluation of
spatial resolution, and a homogeneous water sphere phantom
of 20 cm diameter for the study of noise properties. The
simulations are done for a flat detector with square pixels of
dimensions (0.88 mm)?, which corresponds to a square pixel
size of (0.5 mm)* at the center of rotation. For the Head
phantom and the water sphere, the simulated detector has
512x256 pixels.

The VC and the ZB methods have been implemented as
originally published in [1] and [2], respectively. The filtering
of the 4-step in the LR method has been implemented with the
help of the linogram method [12], yielding an improvement in
efficiency and accuracy, compared to the original published
algorithm [10].

IV. EVALUATION OF IMAGE QUALITY

A. Visual Image Impression and Artifacts

The reconstructions of the Head Phantom for the three
methods are shown in Fig. 1. The results of the reconstruction
of the whole object are compared with a ROI reconstruction.
For the whole object reconstruction, the spiral consists of 2.97
turns covering a z-range of [-19 cm, 19 cm]; the ROI
reconstruction is obtained from projections of 2 turns covering
the range [-12.8 cm, 12.8 cm]. The reconstructed volumes
consist of 512° voxels of dimensions (0.5 mm)°.

Fig. 1:
a) xy-plane at z=0 b) yz-plane at x=0 with reconstruction of the whole object, c) yz-plane at x=0 with ROI reconstruction, d) difference
between b) and ¢) - Window settings: a) to ¢) (C50, W80) d) (C0,W20)

Reconstruction of the 3D Head phantom for the three different algorithms. First row: VC. Second row: ZB. Third row: LR.



The images are of good quality for all algorithms. The
different objects of the phantom are well represented despite
the relatively large cone-angle. The ROI reconstruction does
not bring additional artifacts, which proves that the methods
for short- and long-object reconstructions are equivalent.

A noticeable artifact is the wave in the axial slice, which
comes from the small air bubbles of the right inner ear and is
present for all methods. At the moment, we do not understand
the origin of this artifact.

The ZB method presents some small artifacts in the region
of the frontal sinus, which is probably due to a resolution
mismatch between the 2 partial images. Some small artifacts
are also to be seen in the VC method. None of these artifacts
are present for the LR method, but we can natice
undershooting around some of the high contrast objects. This
undershooting is probably related to the calculation of the
derivative filtersin the 4-step algorithm.

B. Satial Resolution

We simulate an idea delta point at the origin of the
coordinate system (x=y=z=0) and reconstruct the 3D Point
Spread Function (PSF) for each agorithm. The reconstruction
is performed with avoxel size of (0.02 mm)°.

The in-plane Modulation Transfer Function (MTF) is
obtained from the 3D PSF in the diice z=0 by averaging the
radial profiles over al angles and performing a subsequent
Hankel transform (see Fig. 2).
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Fig. 22 In-plane MTF for the LR (solid line), the VC (dashed line)
and the ZB method (dotted ling). The Nyquist frequency is 10 Ip/cm.

The VC and ZB methods should have a similar behavior
since they both apply a ramp filter. The difference noted here
comes from the difference in the current implementations since
the ZB method uses a Hamming window in comparison to the
Shepp-Logan window used for the VC method. This aso
explains why the MTF of the VC method extends beyond the
Nyquist frequency, thus causing arisk of aliasing. The ZB and
LR agorithms cut off at the Nyquist frequency, while LR
yields better frequency representations than ZB.

To characterize in-plane resolution, we choose the 5% value
(p) of the in-plane MTF value. The values can be found in
Table 1. A Nyquist frequency of 10 Ip/cm is expected from the
horizontal detector aperture.

To determine axia resolution, we calculate the Slice
Sensitivity Profile (SSP) which is derived from the 3D PSF by

taking the profile along z at the position x=y=0 (see Fig. 3).
Axial resolution is characterized by the value of the Full Width

at Half Maximum (FWHM) of the SSP (see Table 1).
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Fig.3: SSP for the LR (solid line), the VC (dashed line) and the
ZB method (dotted line)

The VC and the ZB methods have an identical SSP since
they are almost equivalent in the axial direction (no filtering).
We obtain a FWHM of about 1.27 collimated slices. The axial
resolution of the LR method is less good (about 1.5 collimated
slice widths). Moreover, we naotice the undershooting already
seenin Fig.1.

Note that the PSF's of the algorithms are shift-variant due
to the magnification effect of the cone-beam backprojection.

Tablel
In-plane/ axial spatial resolutions and noise level
for the three methods
LR vVC ZB
p, [Ip/cm] 8.7 125 7.9
FWHM, [cm] 0.074 0.063 0.064
O, [HU] 9.7 14.2 6.7

C. Noise Properties

In order to model real quanta noise, we add attenuation
dependent randomized gaussian noise to the original intensity
projections before taking the logarithm. To compare the noise
performances of the algorithms, we simulate and reconstruct a
sphere of diameter 20 cm of constant density. As a measure of
noise, the standard deviation of pixel gray values is evaluated
in an area of (2cm x 2 cm) centered in the dice z=0.

The amount of noise is strongly related to spatial resolution
(see Table 1). Thus, the VC method with its superior spatial
resolution shows more noise than the other methods.

V. PRACTICABILITY

A. Overscan

As shown in Fig. 1.c, the three methods require different
overscan ranges to reconstruct a ROI. This overscan depends
on the transaxial radius of the ROI (see Fig. 4). For objects of
small radius (radius < 0.5 of the scan path radius), the LR
method needs a larger overscan than the other two methods.
The minimum spira length required for exact ROI



reconstruction is still unclear and is subject to further
investigations.
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and ZB method (dotted line).

For the Head Phantom (maximal object radius = 12 cm),
we find overscan values of 4.6 cm, 5.2 cm and 10 cm along
the z-axis for the VC, ZB and LR methods, respectively, which
corresponds to a minimal theoretical ROI size of 16.4 cm, 15.2
cm and 5.6 cm. Since the object is not a cylinder but an
ellipsoid, the real size of the ROI's might be larger. Note that
the ROI that can be exactly reconstructed usualy is not
cylindrical but has danted edges with respect to the xy-plane.

B. Reconstruction Time

The reconstruction time of the three non-optimized
implementations presented here for the reconstruction of the
ROI of the Head phantom are given in Table 2. The times have
been obtained on a Pentium 450M Hz with 512 MB memory.

The reconstruction times are quite long in comparison to
standard 2D CT reconstruction algorithms. The VC and ZB
methods are much faster than the LR method because of the
simple filtering step. The ZB method requires more effort due
to the separate treatment of the projection data on the mask
boundaries consisting of 3D re- and backprojection, but on the
other hand the backprojection is much faster since the size of
the filtered detector is smaller.

Table 2
Reconstruction time in hours for the ROI reconstruction of Fig. 1.c.
LR VC ZB
100 45 51

C. DataHandling

The VC and LR methods are quite attractive since they are
of real FBP-type. The ZB method in comparison requires
many steps for creating the 2 partial images and therefore also
a lot of disk memory to save the temporary results. On the
other hand, the FBP for VC and LR has to be done on a virtual
detector which is much larger than the origina detector
depending on the reconstructed ROI size, whereas the FBP of
ZB can be done on the original detector. However it is possible
to perform multi ROI reconstructions as proposed in [1].

VI. CONCLUSION

All three algorithms achieve an image quality good enough
to match the requirements of clinical applications. However,
the long computation times are prohibitive for any usage
beyond research applications.

In terms of image quality, all algorithms investigated here
are comparable. It turns out that the three algorithms have a
good stability and that the main factor affecting the image
quality of the reconstructions is the filter design. In the current
implementations, the images of the LR method show less
artifacts, while the VC algorithm yields the higher spatial
resolution. In terms of practicability, the VC method is
superior to the ZB and LR methods. For most clinical
applications, it requires fewer projections and less computing
time to reconstruct a given ROI. The overscan strongly
depends on the size of the objects; while the LR method is not
competitive for small objects (e.g. head), the amount of
overscan is comparable for larger objects like thorax or
abdomen.
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Abstract

In backprojection cone beam CT each cone beam image is
first filtered, then 3D backprojected into the object space.
In this paper the filtering point spread function (PSF) is
derived analytically. Itisfound that the PSFisinthe form
of 1D Hilbert transforms. The PSF finds applicationsin a
number of aspectsin long object imaging, including
backprojection implementation of the local ROI algorithm,
elimination of the second intersection artifact, reduced
pitch spiral scanning for increased S/N, and reduction of
spiral overscan in long object imaging.

I. Filtering point spread function

Backprojection cone beam image reconstruction [1,2,8,9]
consists of two steps: a 2D step and a 3D step. First, each
cone beam image undergoes 2D filtering. Then the filtered
image is backprojected into the object space in the 3D step.
2D filtering consists of the following 4 sub-steps: (1) 1D
projection of the cone beam image at angle 6; (2)
Differentiation of the projections; (3) Backprojection of the
projection derivative in the same direction. Sub-steps (1)
through (3) are carried out for 6 in the angular range [n-
102, n+172] forming a backprojection image, wheren isthe
angular displacement (from the u axis) of the direction t
which is the projection of the scan path tangent on the
detector. Finally, (4) take the derivative of the
backprojection image in the projected scan path direction

t . Thefiltered image Y after these 4 sub-steps can be
written as:

Y =Df [dEIB(B)D @POAIIMX) (D

where X isthe cone beam image, M the data-combination
masking operation [5], P(8) the projection operation in the
direction 6, D (6) the differentiation operation w.r.t. the
spatial variable r for the projection at angle 6, B(6) the
backprojection operation in the direction g, and D, the
differentiation (spatial) operation in the projected scan path
direction t . The reason that the projection and
backprojection operationsin Equation (1) are carried out for
0 in the angular range [nN-1v2, n+172] isto ensure that the
product of the derivative d/dt with d/dr has the same sign
for all the angles within the range; otherwise the signs of
the product at different angles will be inconsistent.

The sub-steps (1) through (3) can be combined into a 1D
convolution step as follows:

Theorem 1. The combined operations of sub-steps (1)
through (3) in the angular range [x-112, X+172] is
equivalent to the 1D Hilbert transform in the direction of
the unit vector ¥ which makes an angle x with the detector

u axis:

+11/2
H, = J'X*_n/zde B(6)D;,P(©), @

where H, is the 1-D Hilbert transform in the direction of
the unit vector x . H, can be expressed as a 2-D function
in Fourier space

H, (k) =i Bign(¥ k) . &)

For the cases where the projection/backprojection angular
range is less than 11, we have the following resullts:

Theorem 2. The combined operations of sub-steps (1)
through (3) in the angular range [0, 8,], where 8, [ [n-
W2, N+172] and 8, 1] [n-172, n+172], is equivaent to the
sum of two 1D Hilbert transforms:

f: * d6B(6)D, , P(6) :J/Z(H (4)

)
(6,-11/2) H (61+77/2)

Il Backprojection implementation of local ROI algorithm

An exact backprojection driven spiral scan cone beam CT
algorithm for ROI reconstruction using the local ROI
technique was reported in [3,4]. For viewsin theinterior of
the spiral where the entire cone beam images undergo the
filtering operation in Equation (1), the 2D filtering
operation can be simplified to the efficient 1D ramp
filtering operation in the direction t . For the views near
the two ends of the spiral, the projection operation P(0) is
applied to only part of the masked cone beam image M(X).
Thisisillustrated in Figure 1 which shows the projection
operation for the cone beam images in the view angular
range [1t, 2r] measured from the spiral top. The point Cy
on the u axisis determined by the angular displacement of
the current source position from the spiral top. During the
projection operation, the line integrals on line segments
which cross the u axis to the | eft of Cy are computed



between the u axis and the bottom mask boundary, and the
line integrals on line segments which cross the u axis to the
right of C,are computed between the top and the bottom
mask boundary.

Applying Equations (2) and (4) yields the result that the
jdG[B(G)D, (9)P(@)] portion of the 2D filtering can be
formulated as a superposition of spatially variant 1-D
Hilbert transforms H, H; and H ;. inthedirections t
of the projection of the tangent of the spiral path, U of the
horizontal detector axisand £(u,v) of the unit vector
pointing from the point C, to the detector pixel (u,v),

respectively [10]. These 1-D Hilbert transforms are
illustrated in Figure 2.

Detector

u axis Cy

Figure1. Limitsfor integration line segments for source
positions in the angular range [11,217 from the spiral
top

v
\ H s

How~— H, ,
_Hﬁ(u,v)./-H‘f’
. "Y:M
S H;
Co n u

" H,
[
detector \

Figure2: 1-D Hilbert transforms contributing to the
filtering of a cone-beam projection around the
upper border of the ROI asillustrated in Figure 1

I11. Elimination of Second Intersection Artifacts

A key part of the exact spiral cone beam CT reconstruction
algorithm is the masking operation M to restrict the
projection data to the appropriate angular range required
for data combination [5]. The mask consists of atop curve
and a bottom curve formed by projecting on the detector
the spiral turn above and the turn below from the current
source position. Such masking procedure corresponds for
the most part to the angular range bound by the prior and
the subsequent source positions for data combination.
Portions of some line integral s intersecting the mask,
however, do not conform to the proper data combination
angular range. Consider the top mask boundary and the
line L illustrated in Figure 3, where the spiral path which
projects onto the mask boundary scans from right to left.
Line L intersects the mask boundary at 2 points M; and M,
in other words the integration plane defined by the line L
and the current source position intersects the scan path at
M1, M, and the current source position. It can be easily
seen that M, isthe next source position after the current
one, and M, is the next source position after M;. Thusthe
portion of the line segment that corresponds to the data
combination angular range, i.e. the x-ray datain the angular
range bounded by the previous source position below and
the next source position above, is the segment to the right
of M. Itisthissegment alone that should be included in
the projection operation P(0), i.e. lineintegration.

Projection of the spiral turn above
M
2
i .
1
T—> u

—

Projection of the spiral turn below

Figure 3. A line of integration intersecting the top mask
two times.

In the literature it has been shown [8,9] that the filtering
operation of Equation (1) can be simplified using
techniques such as 1D ramp filtering, Fourier space
convolution, or linogram. In arriving at these resultsit is
assumed that the entire line segment isincluded in the
projection operation. That isto say not only the segment to
theright of M, but also the segment to the left of M, is



included in the projection operation. Such unneeded
contribution to projection occurs whenever the line of
integration intersects the mask boundary more than once.
We refer to such cases as second intersection artifacts.

Errors arising from such line integration occur on the line
segment after the second intersection point M,. A method
to correct for these artifacts in backprojection cone beam
CT image reconstruction was reported in [6]. It was shown
that the projection lines that intersect the top mask
boundary more than once are those that lie within the
angular range A, = [T(-W/2)-1t/2, (0)+11/9, where t() is
the angle the tangent to the top mask boundary at u = o
makes with the u axis, T (-W/2) is the angle the tangent to
the top mask boundary at the left edge u = -W/2 of the
detector makes with the u axis; T(0) = n = tan™(h/2m@) is
also the angle of the projection of the scan path direction on
the detector. For the correction of the second intersection
artifacts for the upper mask boundary, the combined
operation BD,P is applied to the cone beam image in the
limited angular range 8 [1 A, on the affected portions of
the line segments. Applying Equations (2) and (4) yields
the result that the jdG[B(G)D, (9)P(@)] portion of the 2D

filtering results in two Hilbert transforms: (%2H; ) in the
directions t of the projection of the tangent of the spiral
path, and (*2H ;) in the direction of the unit vector g of

the line which makes an angle a O <A, with the detector u
axis, intersects the pixel to be filtered, and tangential to the
mask boundary. These two Hilbert transforms are sketched
in Figure 4a and 4b respectively.

)0l

Figure4. 1D Hilbert transforms: a. H; b. H,

IV. Increasing /N with reduced pitch scanning

Increase the x-ray dosage in spiral cone beam scan to obtain
higher S/N can be achieved by reducing the spiral pitch to
1/3, 15, 1/7,..., of the original spiral pitch [11]. Takethe
case of pitch = 1/3. Instead of combining cone beam data
using the standard mask [5], the masked formed by
projecting on the detector the second spiral turn above and
the second turn below from the current source position is
used. Data combination performed in this way contains
overlapping portions, and the overlap is such that thereis a
data redundancy of factor 3. With the reduced pitch = 1/3,
the modified mask boundary is the cone beam projection
from the current source position of the second spiral turn
above and the second spiral turn below, rather than the
spiral turn above and the spiral turn below. Sincethere are
approximately 3 times the number of source positionsin the
pitch = 1/3 scan compared to the pitch = 1 scan, the total
radiation exposure in the former isthusincreased threefold
compared to that of the latter, resulting in higher signal-to-
noiseratio.

Thereisaflaw in this method, however, because a small
number of integration planes which intersect the spiral path
only once also intersect the spiral path with reduced pitch
only once rather than 3 times. To correct for this flaw, one
solution isto calculate the contribution of these integration
planes to the cone beam image filtered with the combined
operation BD,P, multiply this portion by afactor of 2, and
add the result to the filtered cone beam image. The
procedure is as follows. Construct the two common
tangents at angles 1(e0) and T(-o0) respectively connecting
the top and bottom mask boundary curves diagonally. Then
apply the combined operation BD,P to the cone beam
image in the limited angular range 6 L1 <A, = [1(-)-

T1/2, {0)+11/7, and only to those projections which do not
intersect either the top or the bottom mask boundary.
Applying Equations (2) and (4) yields the result that the
procedure can be simplified as follows: for each angle

o OA,, 1D Hilbert transform along the 2 lines in the
direction of the unit vector @ which makes an angle a with
the detector u axis and are tangential to the top and the
bottom mask boundaries respectively. This procedureis
illustrated in Figure 5.



Contribution from M = 1 planes:
Hilbert transform along all tangents to each mask boundary

Figure 5. 1D Hilbert transforms illustrated at 2 of the
angles OA,.

V. Reduction of spiral overscan in long object solution

Theresultsin Equations (2) and (4) are also applied to
reduce the amount of overscan in the backprojection local
ROI agorithm [3,4]. Briefly, the Hilbert transforms shown
in Figure 2 can be used to determine which portion of the
ROl is affected by the cone beam data at each source
position near the spiral ends; those data that do not affect
the ROI will not be needed. The detailswill be presented in

(7.
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Segmented Cardiac Volume Reconstruction -

A Novel Reconstruction Scheme for
Multislice Cardiac Spiral CT

Herbert Bruder, Karl Stierstorfer, Bernd Ohnesorge, Stefan Schaller, Thomas Flohr

Abstract—At the advent of Multislice Computed Tomography
(MSCT), cardiac volume imaging is an exciting and promising
tool to image the heart’s anatomy and dynamics. Volume
reconstruction algorithms have been implemented successfully
for four slice systems allowing for retrospectively imaging the
human heart in spiral scanning mode at any heart phase
within the heart cycle. However, this method fails due to cone
artifacts for a large number of detector slices. We present a
new cardio volume reconstruction technique - called
Segmented Cardio Volume Reconstruction (SCVR) - for
multislice systems with a large number of detector slices. The
method is characterized by computing a multitude of tilted
segment images optimally fitted to the spiral path, which in a
second step have to be reformatted to axial segment images
and added to a complete CT image at the selected phase in the
heart cycle.

Excellent image quality using a simulation study will be
demonstrated for a 16 slice detector. However, we think this
technique will become the method of choice in cardiac CT
volume imaging for future multislice detector systems with
even larger cone angles. Moreover, the method makes possible
an extremely fast generation of a new volume stack for a new
freely selectable heart phase by only adding the precalculated
axial segment images to a complete CT image dataset. This
property is extremely useful for the clinician in particular to
adjust the appropiate heart phase for visualizing the coronary
arteries.

Index Terms—cardiac volume imaging, spiral scanning,
multislice detector

I. INTRODUCTION

Only in the recent past cardiac volume imaging with CT
was boosted to high quality imaging using multislice
detector technology. Whereas magnetic resonance imaging
is highly effective imaging the morphology and functional
dynamics of the human heart due to its excellent low
contrast detectibility and its capability of diffusion imaging,
CT has its domaine in detecting coronary artery disease by
visualizing the coronary anatomy. Hence it can

H. Bruder, SIEMENS, Medical Engineering Group,
Siemenstr. 1, 91301 Forchheim, Germany,

Phone: +49-9191-188793

Fax: +49-9191-189996

e-mail: herbert.bruder@med.siemens.de

be very useful to detect stenotic malformations and in case
of negative prediction avoid additional catheter study with
classical angiography. Moreover, cardiac CT imaging might
have the potential to detect soft plaques in an early stage of
development thus providing a powerful tool to diagnose
risk for infarction. Early cardiac CT techniques using
prospective triggering in sequence mode are now extended
by retrospective imaging methods in spiral scanning. The
breakthrough of this technology came with multislice
detectors in the last two years [1],[2]. Calcium scoring, for
example, thus becomes a reliable and efficient tool to
predict plaque frequency and increase in the coronary
arteries [3].

Cardiac volume imaging currently implemented with four
slice detector systems is characterized by continous data
sampling and retrospective volume reconstruction of the
human heart at any phase in the heart cycle. In principle the
temporal resolution is adjustable. In clinical use, however,
single and biphasic reconstruction using one or two heart
cycles generating one dataset for a single image proved to
be sufficient.

The method, however, neglects the cone angle of multislice
data and hence is suitable only for a small number of
detector slices. In addition, in order to generate a new
volume stack for a new selectable heart phase a repeated
reconstruction has to be performed for the whole image
volume. These disadvantages can be overcome by using the
method proposed in this paper. The basic idea is to
reconstruct a set of segmented (tilted) volume stacks called
booklets consisting of several booklet pages which in a
second step, are reformatted to axially segmented volume
stacks, and only in a third step these are temporally
rebinned to a complete CT dataset for any selected heart
phase selected.

1I. METHOD

A. Short Review of Segmented Multiple Plane
Reconstruction (SMPR)

In this section we will give a short description of the basics
of Segmented Multiple Plane Reconstruction (SMPR)
which will be presented in detail at this same conference in
another presentation. This new reconstruction scheme for



multislice spiral CT is based on the idea that the spiral
focus path can be decomposed into small, overlapping
segments s). One turn of the spiral is divided into N,
subsegments. In each of these segments a stack of image
pages Ly (x,y) called booklet are defined (1=t = Ny Ny
denotes the number of booklet pages, which should at least
equal the number of detector slices). The image pages are
tilted in two directions in order to optimally fit the spiral
path and to optimally use the multislice detector data. For
each of these pages a set of x-rays is identified to be used
for convolution and conventional 2D-backprojection. Due
to the tilt of the segment pages the foci associated with
these x-rays are very close to the corresponding page, thus
largely avoiding cone artifacts. We use the parallel
geometry in order to employ a 2D- Fourier backprojection
algorithm for image reconstruction.

B. Extension of SMPR for Segmented Cardio Volume
Imaging (SCVR)

1) Volume reformatting

After 2D-backprojection a set of image pages for each
segment booklet is generated which for themselves do not
represent CT images, because only a small number of
projections according to the length of the predefined
segments are utilized for each 2D-backprojection.

In a first step this stack of tilted booklet pages has to be
reformatted to axial segment images located at different
image positions ziy,. This is required because the x-rays
used for each separate backprojection are adapted to tilted

booklet pages. An axial segment page I,,,"™ at z-position
Zimg 15 calculated using the following equation:
Lo "8 (xy) = S bz 5 ) = g P Lo, ) (1)

H(x,y)
The weighting function h controls the reconstruction slice-
width, H represents the sum of all weights and z(x,y)
denotes the pixel-dependent z-position of the booklet page
IsO,t(Xsy)'
After reformation a stack of segmented axial booklet pages
is generated, which for themselves still do not represent
complete CT images. Most importantly, each reformattet
segment booklet corresponds to a time coordinate of the
simultaneously recorded ECG, thus a phase consistent
formation of complete CT images is possible as described
in the next section.

2) Temporal rebinning

The volume reformation described in the previous section
has to be performed for each of the segment booklets to
cover the whole image volume of the heart. Thus, for each
segment s,, an image volume stack V,qy is generated. In a
second step, the axial segment images of the volume stacks
have to be temporally rebinned and added to complete CT
images.

For this purpose a set of corresponding time coordinates
To, are extracted in each heart cycle of the patient’s ECG,
which has been recorded simultaneously to the scanning
procedure (1=n=N; N number of heart cycles contained in
the ECG). For each z-position z,, we have to identify
Nye/2 axial segment images which have to complement
each other to an angular range of m. Appropriate segments
can be retrieved either from one heart cycle in case of
single phase rebinning or from a multitude of heart cycles
in case of multiphasic rebinning. In principle, using a
multitude of heart cycles for temporal rebinning provides
adjustable temporal resolution.

However, in this study we restrict ourselves to single and
biphasic rebinning algorithms, respectively (Fig 2). For a
scanner rotation time of T,=0.5s which is provided by
almost all advanced commercial scanners thus we get a
temporal resolution of at least 250 ms, which in case of
biphasic rebinning is even superior. We present an
algorithm which automatically decides whether single
phase or biphasic rebinning is used. The rebinning mode
depends on the actual patient’s heart rate.

In case of biphasic rebinning the CT dataset is composed of
segments acquired in consecutive heart cycles. The number
of segments As,, retrieved from the first heart cycle is given
by:

N
2-T
Ml = floor( szeg - ( ek -np)) (2)
rot
where
2-T
n o= Sloor( i,
rot

Ty denotes the length of the first heart cycle.
Hence we conclude that the single phase mode is active, if
2Ty ﬂoor(z Ty

Trot Trot
that all of the segments required to complete a CT dataset to
an angular range of o are retrieved from only one heart
cycle.
The single phase mode is also activated at heart rates below
a certain threshold depending on the pitch. The temporal
resolution in case of biphasic rebinning is given by

) = 1. Then As; = N¢,/2, which means

T max(As1 R Asz)
AT _ rot 3)

img 2 N /2
seg

where As, denotes the length of the second data sector
sampled in the second heart cycle.

If a new heart phase T;, is selected, the presented
algorithm allows for a very fast rebinning of a new volume
stack belonging to the desired heart phase by only adding
other suitable axial segment images to complete a CT
image. Nowadays cardiac volume imaging algorithms



repeatedly have to reconstruct a new volume stack for each
change of heart phase. A fast change of heart phase,
however, is very useful for adjusting the appropriate time
instant to image coronary anatomy properly.

3) Proposal for the table feed

In order to guarantee gapless volume coverage of the heart
volume it is required to adjust the table feed. The z-
coverage zy of each axial segment volume stack depends
on the number of detector slices N; and is given by:

2, =f Ny =D

where S is the collimated slice-width and f <1 denotes a
geometrical factor which restricts the size of the target
volume due to the obliqueness of the pages in each booklet.
Hence, the precise value of f also depends on the image
field of view. As can be seen from fig. 2 in case of the
biphasic rebinning mode the spiral feed must not exceed
half of the z-coverage zy in consecutive heart cycles. Due to
the possibility of interpolating missing pages at the top or
the bottom of a segment booklet this limitation can be
relaxed. Putting all together, in case of the biphasic
rebinning mode a maximum table feed characterized by the
maximum pitch value p,,.x can be calculated (here the pitch
is defined as table feed per spiral rotation divided by the
collimated slice-width):

Trot . .
Pmax = 7, (f *(Np =D +1) )

In case of the single phase rebinning mode p,.x is given by:

T 1
p =L (f (N, -+ ) ®)
max T, 2

As an example: for a 16 slice detector with gantry rotation
time T,,=0.5s and f = 0.85 we get the following pitch
values pmax:

60 bpm: ppax = 6.6 (single phase rebinning)

90 bpm: pix = 5.5 (biphasic rebinning)
(bpm=Dbeats per minute).

Using a collimated slice-width of S = Imm the entire heart
can be scanned in about 11s! even if the biphasic rebinning
mode is applied. As can be derived from equation (3) the
temporal resolution is in the range of 125 — 250 ms for a
0.5s rotation scanner.

III. SIMULATION RESULTS

We present a simulation study based on a semi-
anthropomorphic phantom of the human heart and thorax.
In order to demonstrate the potential of the Segmented
Cardiac Volume Reconstruction we simulated a realistic
dynamic behaviour of the coronary arteries. We show axial
and Multi-Planar-Reformattings (MPRs) for a 16 slice
detector system.

Excellent image quality is achieved both in the single phase
and biphasic rebinning mode at different heart rate (Fig 3).

IV. CONCLUSION

A new cardiac volume reconstruction technique, called
Segmented Cardiac Volume Reconstruction (SCVR) has
been presented. The method is based on an algorithm which
takes into account the conical shape of projection data in
multislice CT. Thus the new algorithm is well suited for
multislice data with a large number of detector slices. In
addition, the new algorithm allows a very fast recalculation
of an image volume for a new selection of the heart phase
within the heart cycle. This is a major advantage when
adjusting the appropriate heart phase in order to visualize
the coronary arteries. We think that SCVR will become the
method of choice for cardiac imaging when larger cone
angles in multislice CT, become more common place.
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Fig 1: Parallel projection view of a segment booklet for a
16 slice detector. For better visibility, only four of the
booklet pages are shown. In addition the virtual detector
located in the center of rotation (D.) and the physical
detector (Dp) are shown. It should be pointed out that a
curved phvsical detector in fan-beam geometrv will show

2l
ik,

Fig 2 Principle of the Segmented Cardiac Volume
Reconstruction (SCVR). The segmented volume stacks are
reformatted to axial segmented volume stacks. In a second
step a temporal rebinning procedure using temporal
information from the patients ECG retrieves phase
consistent segmented volume data and adds them to
complete CT-images at the desired z-positions Zzim,. The
biphasic rebinning mode is shown in the figure below.

Fig 3: Oblique MPR of anthropomorphic heart phantom. A
16 slice detector with 1 mm collimated slice-width
operating at pitch 6 was simulated. At a heart frequency of
90 bpm the biphasic rebinning mode was active. Both
calcium and soft plaques are clearly delineated in the model
of coronary artery.
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Lung Nodule Imaging using Micro CT
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Abstract-- We are developing a micro-computed tomography
for imaging lung nodules. The purpose is to enhance the
physician performance in accessing the micro architecture of
the nodule for classification between malignant and benign
nodules. The basic components of the micro CT consist of a
microfocus X-ray source, a specimen manipulator, an image
intensifier detector coupled to charge-coupled device camera
and an image processing unit. Three-dimensional image
reconstruction was performed on a slice by slice technique. A
standard fan-beam convolution and back-projection algorithm
was used to reconstruct the center plane intersecting the X-ray
source. The preprocessing of the 3-D image reconstruction
included the correction of the geometrical distortions and the
shading artifact introduced by the image intensifier. The main
advantage of the system is to obtain a high spatial resolution
which ranges between S ym and 25 g m . In this work we report
on preliminary studies performed with the micro CT for
imaging resected tissues of normal and abnormal lung.
Experimental results reveal micro architecture of lung tissues,
such as alveolar wall, septal wall of pulmonary lobule, and
bronchiole. From the results, the micro CT is expected to have
interesting potentials for high confidential differential
diagnosis.

I. INTRODUCTION

Lung cancer is the leading cause of cancer deaths in the
world. Early detection and treatment of lung cancers are
crucially important to achieve high survival rate. There is
hope in the possibility of early detection of lung cancer with
the helical low-dose CT [1]. Computer-aided diagnosis is a
promising approach to detect suspicious lesions on the
thoracic CT images and alert physicians to these regions
[2]. The detailed examinations of the small nodule lesions
depend on the malignant potential. The differential
diagnosis is ordinarily concluded by histological diagnosis
from biopsy. It is often the case that biopsy technique
becomes difficult according to nodule size is small. The
advance of CT technology, such as a multi-slice CT
scanner, provide fully 3-D images of pulmonary nodules
with a high spatial resolution which ranges between 300
and 500 um . There has been a considerable amount of

interest in the use of 3-D thoracic CT images to observe
small pulmonary nodules for differential diagnosis [3]. A
number of investigators have developed feature extraction
and classification methods for characterizing pulmonary
nodules [4]-[8]. However, these spatial resolutions have
limitation for the quantitative diagnosis of micro tissues that
form the small pulmonary nodule. Then, it becomes
necessary to develop a micro-computed tomography which
enables to analyze the micro architecture of lung tissues.

In recent years, there has been an increasing interest for
developing the micro CT system. Ruegsegger et al.
developed two systems based on multiple fan beam scanner
[9]. One of their systems is realized for bone samples and
small laboratory animals with a spatial resolution of 20 um
and another system is used for the examination of patients
with a spatial resolution of 120 um . Johson et al. developed
a volumetric micro CT with a spatial resolution of
50 um based on cone-beam scanner for quantification of
pulmonary arterial wall [10]. Since the size of lung tissue
such as alveolar wall is the order of several um , a
visualization of lung tissues requires the higher spatial
resolution. Ritman et al reported that the spatial resolution
of 2 um was achieved with synchrotron X-rays [11]. The
spatial instruments require realizing the synchrotron-based
system.

We present a micro CT system for analysis the micro
architecture of lung tissues. The basic components
consisted of a microfocus X-ray source, a specimen
manipulator, an image intensifier detector coupled to
charge-coupled device camera and an image processing
unit. From results of the application to normal and
abnormal lung tissues, we will demonstrate the availability
of the micro CT for analysis of the lung micro architecture.

II. METHODS

Fig. 1 shows the block diagram of the micro CT. The CT
mainly consists of a microfocus X-ray source, a specimen
manipulator, an image intensifier detector coupled to CCD
camera and an image processing unit. The minimal size of
the microfocus X-ray source is 7 um . The detector size of 11

can be chosen from three different sizes of 9, 6, 4.5 inch.
The CCD array has three different areas corresponding to
the II size with 1300 by 1030 pixels or 1300 by 512 pixels.
The source-to-specimen distance and source-to-detector
distance can be varied to obtain the desired magnification.
The micromanipulator precisely positions the specimen
table in the X-ray beams and rotates it under computer
control through 360 degrees for projection data acquisition.
This system can handle objects up to 200mm in diameter
and up to 200mm in height. The acquisition time of 1800
views through 360 degrees is approximately one minute.
The table position and motions and camera operations are
under the control of the host computer with two CPUs
(Pentium III Xeon, S00MHz) and 512MB main memory.
The host computer receives the projection images and
performs all data preprocessing, and image reconstruction is
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Fig.1. System overview

performed. Since the system geometry is a cone-beam
geometry with a single circular orbit of the X-ray source, it
is possible to apply cone beam reconstruction techniques
[13] based on the Feldkamp algorithm [12]. These
techniques provide approximate 3-D reconstructed images
because they do not satisfy sufficiently the requirement for
exactly 3-D image reconstruction [14]. In this CT, a
standard fan-beam convolution and back-projection
algorithm is used to precisely reconstruct the center plane
intersecting the X-ray source. The preprocessing of the 3-D
image reconstruction includes the correction of the
geometrical distortions and the shading artifact introduced
by II. The spatial resolution on the CT image ranges
between 5 ym and 25 um . The slice thickness is achieved up

to the order of several um .

III. RESULTS

In the preliminary study, we investigate how the spatial
resolution affects on quantitative diagnosis of micro lung
tissues. We used three kinds of lung tissues, normal lung
tissue, peripheral type of lung adenocarcinoma, and
pulmonary adenocarcinoma in emphysematous lung. In
order to compare between two different spatial resolutions
in micro CT images, we reconstructed two volumetric
micro CT images with different resolution of 6 um and
24 um for each lung tissue specimen. The measurement
condition used in this experiment is as follows; the size of
the microfocus X-ray : 9 um, X-ray tube current : 0.1mA,
X-ray tube voltage : 60kV, slice thicknesses : 6 um and
24 um , and the number of slice : 30slices. Each tissue is
reconstructed into 1024 x 1024 x 30 cubic voxels (each
voxel has 6 ym or 24 um on a side).

Fig.2 shows the resected specimen, optical microscopic
image, and soft X-ray image of the peripheral type of lung
adenocarcinoma. In these figures the width of the alveolar
wall where cancer cells are spread ranges from 12 ym to
59 um . Fig. 3 shows the peripheral type of lung
adenocarcinoma with two different spatial resolutions of
24 ym and 6 um . Using the resolution of 24 yum, the alveolar
wall of abnormal area is revealed due to wall thickening,

Fig.2. Abnormal tissue (peripheral type of lung
adenocarcinoma) (a) Resected lung tissue. (b) Optical
microscope image. (c) Soft X-ray image.

(b)
Fig.3. Micro CT images of the abnormal lung tissue.
(peripheral type of lung adenocarcinoma) (a) Resolution :
24 um . (b) Resolution : 6 ym .

while the alveolar wall of normal area can not be identified.
With the resolution of 6 um, the alveolar walls of both
normal and abnormal areas can be easy to identify. Fig. 4
shows the 3-D display of the stacked slices of the peripheral
type of lung adenocarcinoma with two spatial resolution of
24 ym and 6 um . Using the resolution of 24 um, the 3-D
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(b)
Fig.4. 3-D display of the stacked Micro CT images of the
abnormal lung tissue (peripheral type of lung
adenocarcinoma) Resolution : 24 ym . (b) Resolution : 6 ym .

structure of the alveolar wall of abnormal area can be easy
to identify. While with the resolution of 6 um, the 3-D
structure of the alveolar walls of both normal and abnormal
areas are revealed.

Fig. 5 shows the resected specimen, optical microscopic
image, and soft X-ray image of the pulmonary
adenocarcinoma in emphysematous lung. In these figures
the width of the alveolar wall where cancer cells are spread
ranges from 12 um to 59 um . Fig. 6 shows slice images of

the pulmonary adenocarcinoma in emphysematous lung
with two different spatial resolution of 24 ym and 6 um .
Using the resolution of 24 yum , the alveolar wall of
abnormal area is revealed due to wall thickening, while the
alveolar wall of normal area can not be identified. With the
resolution of 6 um, the alveolar walls of both normal and
abnormal areas can be easy to identify. Fig. 7 shows 3-D
display of the stacked slices of the pulmonary
adenocarcinoma in emphysematous lung with two spatial
resolutions of 24 yu and 6 um . Using the resolution of
24 um, the 3-D structure of the alveolar wall of abnormal
area can be easy to identify. While with the resolution of
6 um , the 3-D structure of the alveolar walls of both normal
and abnormal areas are revealed.

Fig. 5. Abnormal tissue (pulmonary adenocarcinoma in
emphysematous lung) (a) Resected lung tissue. (b) Optical
microscope image. (c) Soft X-ray image.

(b)
Fig.6. Micro CT images of the abnormal lung tissue (pulmonary
adenocarcinoma in emphysematous lung) (a) Resolution :
24 um . (b) Resolution : 6 ym .

IV. CONCLUSION

We have presented a micro CT for imaging pulmonary
nodules. The spatial resolution of 5 ym allows physicians to



(b)
Fig.7. 3-D display of the stacked Micro CT images of the
abnormal lung tissue (pulmonary adenocarcinoma in
emphysematous lung) Resolution : 24 yn, . (b) Resolution :

6 wn.

analyze the micro architecture of lung tissues, such as
alveolar wall, septal wall of pulmonary lobule, and
bronchiole. This CT allows for the first time to document
changes of tissue components between normal and
abnormal area. Future work we will have to show if
structure indices are sufficient to predict the likelihood of
malignancy of the pulmonary nodule. The high spatial
resolution micro CT images provide the basic data set and
then might help to improve the performance of physician
diagnostic decisions.
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Theoretical framework for a dynamic
cone-beam reconstruction algorithm
based on a dynamic particle model

Pierre Grangeat, Anne Koenig, Thomas Rodet, Stéphane Bonnet

Abstract—Dynamic cone-beam reconstruction algorithms are
required to reconstruct 3D image sequences on dynamic 3D CT
combining multi-row 2D detectors and ultra-fast rotating gantry.
In order to compensate for time evolution and motion artifacts,
we propose to use a dynamic particle model to describe the object
evolution. One main interest is to process data acquisition on
several half-turns in order to reduce the dose delivered per
rotation with the same signal to noise ratio. We describe the
dynamic particle model and its approximations, the dynamic
cone-beam CT acquisition model and the dynamic cone-beam
reconstruction algorithm based on a cone-beam to fan-parallel
beam rebinning approach.

Index Terms—Dynamic tomographic imaging, fully four-
dimensional image reconstruction, CT Fluoroscopy, cone-beam,
particle model, motion compensation, time evolution.

I. INTRODUCTION

THE purpose of dynamic computed tomography (CT)
imaging is to reconstruct tomographic image sequences of
dynamic organs in order to take into account the dynamic
nature of a living human body. The description of dynamic
organs includes both time evolution and motion. In this
publication, we mainly focus on dynamic 3D Computed
Tomography combining multi-row 2D detectors and ultra-fast
rotating gantry. The main applications are 3D CT Fluoroscopy
for interventionnal radiology, to help the radiologist to guide
biopsy needles through soft tissues like the lung, radiotherapy
planning to better delineate the tumour and healthy tissues
during motion, heart diagnostic imaging to study heart kinetic
or to reconstruct coronary arteries.

LETI is involved in the European project DynCT (IST -
1999 - 10515) dedicated to both real time and off-line motion
compensated reconstruction and visualisation for dynamic
computed tomography. Only the real time case is described
here. In this presentation, we introduce the theoretical
framework of a new dynamic cone-beam reconstruction
algorithm based on a dynamic particle model. Standard
approach tends to use a short scan acquisition over one half-
turn without motion compensation [Taguchi, 2000]. But it
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implies to increase the dose delivered per rotation to preserve
the signal to noise ratio. Using the dynamic particle model to
compensate for dynamic evolution, it becomes possible to
increase the acquisition time window over several half-turns,
up to 4 in our case, in order to reduce the dose delivered per
rotation to the patient with the same signal to noise ratio.

In [Hsieh, 1997] the impact of various reconstruction
algorithms on 2D CT Fluoroscopy is investigated and inherent
limitations of the CT Fluoroscopy in terms of time lag and
delay is demonstrated. In [Taguchi, 1998], the authors propose
to use a feathering technique to suppress an image artifact
which rotates like a radar search line and sometimes hinders
accurate observations. In [Ritchie, 1996], the reduction of in
plane motion artifacts is achieved using a pixel-specific back
projection technique in 2D. In [Schiffter, 1999] a motion
compensated projection reconstruction algorithm is proposed
for the reduction of blurring artifacts in MRI using motion
estimation applied on a first set of low resolution
reconstructed images. The new algorithm proposed here uses
also this double reconstruction principle. It allows to
compensate for both time evolution and motion.

II. THE DYNAMIC PARTICLE MODEL

We consider the image function f as the map of the physical
property we want to study, in the present case the X-ray linear
attenuation coefficient or the density. This function f is
defined in a (O, x, y z) cartesian coordinate system. We
represent by f (M, t) = f (X, y, z, t) the value of the function f at
the point M of coordinate (X, y, z), at the time instant t. We
suppose here that the function f is sufficiently smooth and
vanishes outside a ball Q of radius R,.

In order to define the particle model, we describe at the
reference instant t, the object as a continuum of particles
associated with each point M of the support Q. We define the
trajectory I'(M, t) associated with this point M as the set of
positions this point M will take at each time value t within Q.
By definition, M corresponds to the initial position along the
trajectory I'(M, t):

(M, t)) =M (D

In the following, the image sequence will be reconstructed
at discrete time samples t;.

In the more general case where both time evolution and
motion have to be taken into account, the function f may vary
along the trajectory I'. Thus, the general function expression
associated with the dynamic particle model is given by the



formula f(I'(M,t),t), where T'M,t)EQ and tER. This
corresponds to a continuous expression of the discrete particle
models used in computer graphics to describe deformable
objects [Lombardo, 1996].

One example is a flying ball of constant radius which
content might vary along time due to contrast product
injection or to matter exchange with the neighbouring flying
balls. In the special case of matter conservation and non-
compressible material, it would be equivalent to assume the
content remains constant along time.

The time evolution compensation will be based on the first
order approximation of the expression f(I'(M,t),t), in the
neighborhood of the discrete time sample t;:

FICM,D),)~HT(M, ), ti)+H{[<VA, Z—l; (M,t)>+ Z—i (TM,),t](t-t)
2

where VT is the gradient of f and <, > the scalar product.
When the object fulfills the mass conservation principle and
is irreducible, the term in bracket [] is null and we get:

f(r(m,t), t)=F(r(M.), 1) 3)

However, in the reality, some important tissues like the lung
are reducible and since the organs may move outside the field
of view, the mass conservation principle is not always
fulfilled. Thus we need to consider the general case.

In order to later simplify the computation, we introduce a
cartoon like step-by-step motion law :

I'(M,t) = T(M,t)) for ti=t<t; 4

ar
Then, since — is null, the first order approximation (2) of
ot

the dynamic model becomes:

f(r(vo). oMt i )20 (). 1 oty 5)
In this case, this formula (6) can be approximated by a

linear prediction law with respect to t between two time

samples, for instance t; and t; — T, where T is the rotation

period of the continuously rotating scanner:

f(o(M,t), =f((M,1), ti J+

f(T(M»ti ) 4 )-f(T(M»ti ) ti‘T) -(t—ti)

III. THE DYNAMIC CONE-BEAM CT ACQUISITION MODEL

(6)

1. Dynamic cone-beam projection

We consider the cone-beam geometry associated with a
curved multi-row detector centred on the X-ray source F as
described on the figure 1.

The dynamic cone-beam geometry is parametrized by the
angle f between (F,0) and y axis, the angle y between the
detector column and the (F,O) axis, the row height q4 with
respect to the trajectory plane, and the acquisition time t (see
fig. 1). It is defined as follows :

XAp ,y,qd,t)=M@ I8 qd)f(M,t)dM 7)

where D(f,y,qq) is the straight line between the source point F
and the detector cell Ay. In order to model a continuously
rotating acquisition process, we state the following relation :
B(t) =Po + ot (8)
where o defines the angular rotation speed. For a CT scanner
with a 0.5 s rotation period, o = 4w rad.s™.

In the following, we assume the angle y belongs to [-Yim, V]
where v, is the half fan angle. In our case we choose

Y =%rad.
o A
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Figure 1 : cone-beam geometry.

2. Dynamic fan-parallel projection

The reconstruction will be done via the line rebinning
approach in fan-parallel projection as suggested in [Grass,
2000].

The fan-parallel geometry is defined by a virtual planar
detector placed on the rotation axis with coordinates p parallel
to the trajectory and q parallel to the rotation axis. We define
@ as the angle between the virtual detector and the (0,x) axis.

Planar detector

Source trajectory
Figure 2 : fan-parallel-beam geometry.

The dynamic fan-parallel projection is defined as follows :

xfpf(cp,p,q,t)=M f(M),t)dM 9)

€D (e, p.q
In the ideal case, the full fan-parallel projection data set is



available for each t. Then, the short scan dynamic fan-parallel
reconstruction formula is:

fT(M,t),t) = fFHDYT (¢, A[T (M, 0], ) dg (10)
where Yf is the weighted fan-parallel projection:
Yf((p,A,t) = Xfp,f((P,A,t)W(A) (1 1)
2
R . p

and w(A) = T5 5 2
VR -p +q

A [T (M, t)] is the fan-parallel projection of the point I'(M,t)
onto the virtual detector, with detector coordinates p,q.

HDYfT is the weighted projection Yf convoluted along the
transverse row by the ramp filter HD(p).

IV. THE DYNAMIC CONE-BEAM RECONSTRUCTION ALGORITHM

The reconstruction algorithm described here is dedicated to
3D CT fluoroscopy, assuming a real-time reconstruction
processing at a frame rate of 12 frames per second for a gantry
rotation period T of 0.5 s.

1. The sliding window principle

Let us consider the discrete fan-parallel angles :
¢i=iAg (12)
where Ag is the angular step between two reconstructed
frames. In the following, we assume Ag = 2. y,,. It means we
divide the full rotation in constant angular positions separated

from the full fan angle 2.y, equal to L. For a 0.5 s gantry

3
rotation period, this corresponds to a frame rate of 12 images
per second.
The associated discrete reconstruction time t; associated
with the last projection of the angular range [g;, @+AQ] is :

((Pi“' ACP)“' Yon ™ |30

ti=———— (13)
)
where Tm corresponds to the rebinning latency delay to
®

begin the fan-parallel reconstruction.

We define the overscan ¢ angular range to compute
f(T(M,t)),t;) as the @ sliding window [qi- n.t, g;+Ag] where n
represents the number of half-turns on which we want to
smooth the data to improve the signal to noise ratio or to
reduce the dose.

The associated 3 angular range defined by the following
rebinning equation (14) is the [ sliding window

A 3
fornan =5 )it AB), where AB=Ap=21.

The sliding window principle is that a new frame is
computed for each new t; value. This new frame corresponds
to a shift of the B sliding window from A, and the associated
shift of the ¢ sliding window from Ag.

2. The cone-beam to fan-parall-beam rebinning
We get the following rebinning equation :

Xfpf((pa P, 9, t) = ch(ﬁa Y, dd» t) (14)
with :
B=¢-vy
. p
=arcsin | - — 15
Y ( R) (15)

FGd

W=9 |7 -
2 2
VR™p

However, we need to compute Xgf(p, p, q t) at t;, the
reconstruction time associated with the time range [t; _ i, t;].

When the time difference (t;-t) is small, we can use a nearest
neighbour interpolation:

Xfpf(q)ap’qati) = Xfpf((papaq’t) (16)

Otherwise, if the sliding window is larger than 2, using the
linear interpolation model associated with equation (6) we get
the following extrapolation formula :

ti-\t-T .
Xfpf(cpapaq)ti): T ch(ﬁaYaqdat) + t‘Tt ch(BaYaqdat'T)
a7
where T is the gantry rotation period.

3. Block reconstruction

We split the @ angular range into elementary projection blocks
of size Agp = g We denote BHDYf(I'(M,t),t,¢p;) the partial

block backprojection over the projection angular [, ; + Ag]:
BHDYf(I'(M, t),t,¢;) = j;fifcp?“‘) HDYf ((‘p, A [r (M, t)] t)d @
I gt
(18)
For seak of simplicity, we assume here we want to
reconstruct the function at the instant t = ty. Thus T'(M,t) = M.
The following result can then be generalized for each t; time
by shifting the sliding window.
From the reconstruction formula (10), we get:

f(M.to) = j;‘ HDY f (¢, A [M], t, ) dg (19)

. T .. .
Since Agp = E , we can decompose this integral into 3 terms

associated with 3 partial block backprojections sectors [0, %],
n 2m, 2%
- b — 9 . 5“ :

[ 33 LI 3 ]

2
f(M,tg) = EOBHDY f (Mity» )
1=
The dynamic evolution compensation will take place in the
estimation of each partial block backprojection as described in
the next section.

(20)

4. Dynamic evolution compensation

Given an angular sector i, let us take a set of N, partial
block projection acquired in the past for the same angular



range modulo 7t :
(pij:(pi—j.ﬂi j:O,....,Nb- 1

We get for each M point a set of values along the I'(M,t)
trajectory for each associated block instant BHDYf(I'(M,;),t;;
@ij), where t; is the time associated with ; according to
equation (13). Using the first order approximation (2) of the
dynamic particle model, we get :

or of
H{(T(M,t),t5) = f(M, to)H[<VH, E (M,to)>+ E (M, t0)](tij-to)

2
Under the piecewise constant motion hypothesis (4), as no

motion occurs during the block angular range, the same
relation holds for the partial backprojection:
BHDYf(I'(M,t;),t;j, ;) = BHDY (M, to,i0) + a(M,@io)-(tij-to)

(22)
Thus, the terms BHDYf(M,ty,p0) and a(M,g;) can be
computed by linear regression on the discrete sample set:

Jorove (c (.t ) 0 3o N0}

In order to apply such a linear regression, we need to have
at least two samples belonging to the sliding window.
Otherwise using the same relation, we can only compensate
for motion, and not for time evolution. The motion
compensation equation is given by:

BHDYf(F(M,tu),tu,cpu) = BHDYf(M,to,(pi()) (23)

This is equivalent to choose a zero order regression model.
In every case, it is important to note that using an overscan
range within the sliding window, the dynamic evolution
compensation by regression introduces a principle equivalent
to the feathering technique used by different authors in CT
fluoroscopy [Taguchi, 1998].

5. Motion estimation

In the previous sections, we have assumed we can measure
the motion field between M and I (M, t;;). However, as this
motion field is unknown, we need to estimate it. We present
here only the basic idea. Detailed explanation will be given in
the final version.

The first order approximation (2) can be interpreted as the
sum of a spatial shift term and a time evolution term. In first
approximation, we will assume here that the shift can be
approximated by a translation motion at constant speed:

T(M,t) = M + D(M). (24)

where D(M) is the displacement of the point M after a =
rotation of the gantry and T is the gantry rotation period.

The reconstruction process without motion compensation
will produce a blurred image. However, the reconstruction
after a m rotation will produce the same blurred image, shifted
from the displacement vector D(M). Thus, using a correlation
principle, it will be possible to estimate this displacement
vector. Such a correlation approach should not be too much
disturbed by time evolution.

In order to reduce the blurring spread, the image sequence
needed to evaluate the motion should be reconstructed with

the smallest temporal resolution corresponding to a half-turn
rotation.

In fact, we need to get the full motion field over the region
to reconstruct. The actual technique we use is a block
matching approach as for motion estimation in MPEG coding
[Sikora, 1997].

One other important issue is the ability to detect when the
particle trajectory goes outside the region of interest. In the
approach described here, we can detect it since the correlation
fails. The prediction should be applied only to those points
which are inside the region of interest. To manage this issue,
we estimate for each motion vector a confidence factor
associated with the correlation factor, and we take it into
account within the estimation of the prediction rule
coefficients given by the equation (22).

V.CONCLUSION

In this paper, we present the outline of the theoretical
framework for time evolution and motion compensation in
dynamic cone-beam reconstruction algorithm using a dynamic
particle model. The principle described here for a line
rebinning algorithm can also be applied to direct cone-beam
reconstruction algorithm such as Feldkamp algorithm.

However, according to [Grass, 2000], this line rebinning
approach can be generalized to reconstruct a larger region of
interest by correctly handling the line shadow zone region.
The approach described here can also be extended to such a
case. Further investigation are needed to extend this dynamic
approach to indirect plane rebinning algorithm via the first
derivative of the Radon transform using Grangeat formula.

Preliminary results will be presented at the conference.
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Image to Volume Weighting Generalized ASSR for
Arbitrary Pitch 3D and Phase—Correlated 4D

Spiral Cone—Beam C'T Reconstruction
Marc Kachelrief*, Theo Fuchs, Robert Lapp, Dirk—Alexander Sennst, Stefan Schaller, Willi Kalender

Abstract— The next generation of medical CT scanners will
measure up to 16 slices or more simultaneously which will re-
quire dedicated cone—beam reconstruction algorithms. The
basic requirements for medical CT are high image quality
and fast reconstruction (reconstruction of a complete vol-
ume within a few minutes is desired). Due to the small
cone—angle (typically a few degrees only) approximate cone—
beam reconstruction will be the method of choice. A very
promising candidate is the advanced single—slice rebinning
(ASSR) which rebins the cone—beam data to parallel beam
data on tilted reconstruction planes (R-planes) and uti-
lizes 2D reconstruction algorithms to obtain tilted images
[Med. Phys. 27(4), 754772 (2000)].

In its original form ASSR allows to reconstruct 3D data
for a fixed pitch obtained with a non—tilted gantry. However,
medical demands are manifold: the pitch must be freely se-
lectable, gantry tilt scans are required and, last but not
least, cardiac applications require phase—correlated 4D re-
constructions. We have therefore generalized the ASSR al-
gorithm by adding the following three attributes: a) the
table increment per rotation is now correctly taken into ac-
count as the vector d, b) the restriction on the optimality
of the R—planes is loosened to allow for more than one R—
plane per reconstruction position and c) the final volume
is generated using adjustable weigths for the tilted images.
These weights are used to balance between image quality
and dose usage and to select a desired cardiac phase in the
final volume. This (tilted) image to (cartesian) volume (I2V)
weighting approach can be performed in real-time. To eval-
uate the new method we have simulated cone—beam rawdata
of a thorax and a cardiac motion phantom.

The generalized ASSR approach in combination with 12V
shows very good results even for low pitch (p < 1.5) scans.
Since slightly more artifacts appear for the low pitch case
with full dose usage (equal weights for all planes) it is nec-
essary to provide real-time access to the weights. The car-
diac reconstructions are of high image quality but slightly
lower temporal resolution as compared to the gold standard
180°MCI.

Keywords— Computed tomography (CT), Cone—beam Spi-
ral CT (CBCT), 3D reconstruction, 4D reconstruction

I. INTRODUCTION

UTURE medical CT scanners will scan significantly

more than four slices simultaneously. Major CT ma-
nufacturers have announced scanners of up to 16 slices for
the end of 2001. Neglecting the cone—angle of the scanner
as it is done in today’s 4-slice reconstruction algorithms
will then yield unacceptable image artifacts [1]. Therefore,
there is a need for fast and efficient cone-beam reconstruc-
tion algorithms. Although a large number of more or less
efficient algorithms have been developed in the last decade

Institute of Medical Physics, University of Erlangen—Niirnberg,
Krankenhausstr. 12, 91054 Erlangen. Corresponding author: Marc
Kachelriel, E-mail: marc.kachelriess@imp.uni—erlangen.de

[2], none of them meets all requirements of medical CT:
a) correct handling of the gantry tilt, b) arbitrary spiral
pitch while using the full detector area and c¢) the abil-
ity of performing a 4D cardiac reconstruction. Whereas
the gantry tilt problem can be solved in principle for all
the existing algorithms by simply reformulating the coor-
dinate transformations solving the other restrictions is not
straightforward.

We therefore generalize the ASSR (advanced single—slice
rebinning) algorithm [3] to fulfill these requirements. The
ASSR algorithm, as an advancement of Noo’s single—slice
rebinning algorithm [4], fits tilted reconstruction planes
to the spiral trajectory to perform a rebinning from the
3D cone-beam data to 2D parallel-beam data on these
R-planes. The reconstruction then uses a standard 2D
method (e.g. filtered backprojection) and the set of recon-
structed tilted images is interpolated in the z—direction to
obtain the final volume [3] (a similar method which has
never been evaluated was proposed in [5]). Since ASSR has
turned out to be very promising [6], [7] two generalizations
thereof have been proposed: one for the case of arbitrary
gantry tilt [8] and one to allow for arbitrary pitch [9]. The
results are encouraging and led to the development of an
even further generalization to combine these approaches.
The new approach presented here uses the rebinning equa-
tions of reference [8] together with the idea to losen the
restriction of the R-planes to allow for more than one R-
plane per reconstruction position [9]. A novel idea of our
approach is to weight each available image before it is inter-
polated into the final volume. The weights can be chosen to
trade off between high image quality and high noise (i.e. as-
signing smaller weights to R-planes which are less optimal)
or lower image quality and lower noise (i.e. assigning the
same weight for each plane regardless of its optimality).

As a spin—off, the generalized ASSR combined with 12V
allows to perform 4D reconstructions for low pitch scans
with periodically moving objects. The weights of images
corresponding to cardiac phases which should not appear
in the volume are simply set to zero. Details of cardiac
CT scanning and the restrictions on the maximum pitch
as a function of the patient’s heart rate can be found in

references [10], [11], [12].

In this paper, we will outline the generalized ASSR al-
gorithm and the weight selection and give some descriptive
examples.



II. SIMULATIONS

To evaluate our new approach we have simulated spiral
cone-beam data corresponding to the in—plane geometry
of a typical medical CT Scanner (1160 projections per ro-
tation, 672 detector channels per detector row, and a fan
angle ® = 52°) using a dedicated x-ray simulation tool
(ImpactSim, VAMP GmbH, Méhrendorf, Germany). Two
phantoms have been simulated: the thorax phantom de-
scribed in the phantom data base http://www.imp.uni—
erlangen.de/forbild and the cardiac motion phantom de-
scribed in [11].

For the thorax scan in standard mode we have chosen a
collimation of 16 x 1 mm and we have performed simula-
tions for 4 mm, 8 mm, 16 mm and 24 mm table increment
per rotation.

Since shorter rotation times and thinner slices are ex-
pected for the future we have simulated the cardiac motion
phantom for a wide range of heart rates fyg with 0.375 s
rotation time (160 rpm), 12 x 0.5 mm collimation and a ta-
ble increment of d = 2 mm. This allows to cover the heart
(typically 12 cm to 15 cm axial length) within less than
30 s (single breath—hold). Evaluating the thorax phantom
in cardiac mode yields too huge data sets due to the highly
overlapping and fine sampling in z. Thus we scaled the tho-
rax scan by a factor of 2 in the z—direction, i.e. 12 x 1 mm
and d =4 mm (even so, the rawdata file size is 2.5 Gigs).

I1I. RECONSTRUCTION

The reconstructions shall be centered about the views
naapr where Aapg 1s the so—called reconstruction increment
and should be chosen small enough to ensure full detector
usage and resolution [3]. The integer n counts the recon-
struction positions. For each reconstruction position ag
an optimal R-plane which minimizes the mean square de-
viation Apean of the plane to the spiral trajectory within
the interval agr — 7/2 to ar + 7/2 can be computed [8].
Using these planes only, reconstruction for low pitch would
be possible, but parts of the detector would remain un-
used and thus would have to be collimated out. Since we
want to be able to use the full detector, our new approach
allows to reconstruct more than one tilted image from a
given reconstruction position. Assuming M images per re-
construction position the set of all R—planes is given (in
normal representation) as

Rom inpm -7 —apm =0

with m = 1,..., M. The ay,, are chosen equidistant in
m as apm = an + maaps. The increments aar and Aaayy
together with the value of M are chosen to ensure full de-
tector usage. The normal vectors n,,, are chosen for a
given dny, to minimize the mean square deviation

ar + %ﬂ'
/ do (nnm - s(a) — anm)z

OzR—%ﬂ'

a1
nm T

with s(«) being the spiral source trajectory and ap =
naog. The minimization procedure is described in [8].

IV. IMAGE WEIGHTS

We make use of two possibilities of weighting the individ-
ual images prior to volume interpolation. For a standard
reconstruction, the image weights are chosen as

1 q
Wpm = (Anm) with ¢ > 0.

The quality parameter ¢ is used to balance between best
dose usage (¢ = 0, making full use of non—optimal R-
planes) and best image quality (¢ = oo, only using the
optimal R—planes and neglecting non—optimal ones).

For cardiac 4D reconstruction we additionally use the
cardiac phase ¢(a) € [0, 1), which is a function of the view
angle o and describes the cardiac motion relative to R-R,
to weight the images. The user desires to reconstruct the
images at the reconstruction phase cg. The mean square
deviation of the cardiac phases contributing to reconstruc-
tion position ag = naag from the target phase cg is de-

fined as

aR + 7
/ do (c(a) — er)” .

OzR—%ﬂ'

n

ol
T

Here, we implicitly assume a proper handling of the modulo
property of the cardiac phase. We define the cardiac weight

as
1\?
w, = (A_n) with ¢’ >0

and again we have a quality parameter available to adjust
the image quality.

V. IMAGE TO VOLUME WEIGHTING

The final step is to perform an interpolation from a set
{fam(z,y, z) } of tilted images (each with weight wpm) to a
cartesian volume f(x,y, z). In general, this can be achieved
by convolving the reconstructed planes with a three dimen-
sional interpolation kernel k(z, y, z) followed by proper nor-
malization:

anmfnm(xaya Z) * k(x,y, Z)

fx,y,2) = Y
anmlnm(xaya Z) * k(x,y, Z)

The indicator function 1pm, is 1 if (2,y,2) € Rym and 0
elsewhere. Since ASSR does not require interpolations be-
tween image pixels in the z and y direction, the interpola-
tion kernel reduces to a function of z only: k(z). Its shape
is currently chosen triangular and care is taken that the
z—kernel is wide enough to avoid gaps in the final volume:
the denominator of (1) must be positive ¥V, y, z. Using lo-
cal kernels k(x, y, z, ®0, Yo, z0) and spatially varying weights
Wnm (%, y, z) may be of advantage but is not discussed here
because this is beyond this short paper’s scope. More so-
phisticated 12V methods such as modifying the kernel and
the weights as a function of the cardiac information are
under further investigation.



Fig. 1. ASSR, 16 x1 mm collimation, 8 mm table increment. Coronal
and sagittal MPRs of the thorax phantom. 12V using all planes
(g = 0, top) vs. 12V using optimal planes only (¢ = co, bottom).
Noise is increased by a factor of 1.7 for the latter case. (0/100)

VI. RESULTS

In general, using non—-optimal planes due to overlapping
data acquisition shows no significant disadvantage as com-
pared to the maximum pitch (p = 1.5) approach (original
ASSR) except for the longer reconstruction time. This is
demonstrated in figure 1 showing differences only in image
noise which is increased by a factor of 1.7 for the reconstruc-
tion using only the optimal planes (this reconstruction is
equivalent to a p = 1.5 scan with fewer slices). The in-
crease in noise can be understood as follows: to achieve a
table increment of 8 mm, a collimation of 5 x 1 mm would
suffice (pitch 1.5). Thus, only 5/16-th of the detector are
used by ¢ = oo which is roughly 1/1.72

To demonstrate differences apart from the image noise
between the ASSR approach only using the optimal planes
(¢ = o0) and the one making full use of the patient dose
(¢ = 0) it is necessary to look at transaxial planes (as we
have seen that no significant differences can be observed
in MPR displays for the geometry we simulated). There-
fore, figure 2 shows a slice in the shoulder region where
attention should be paid to the four spheres representing
the humerus. Especially one of the spheres is surrounded
by artifacts for ¢ = 0 whereas they are imaged artifact—
free for the optimal ¢ = oo case. A similar behavior can
be observed for the ribs (no images shown). The streaks
emerging from these spheres may lead to misdiagnosis: the
real patient anatomy contains more complex objects close
to the lung. An example may be the heart which is often
filled with contrast agent. Making use of I12V’s real-time
capabilities and evaluating the volume as a function of ¢
helps to resolve such ambiguities.

The reconstructions of our virtual heart phantom (phan-
tom and motion function are defined in [11]) in figure 3
(f = 70 min~! and 130 min~!) demonstrate the capabil-
ity of I2V ASSR to resolve motion. We have chosen ¢ = oo
for these reconstructions, except for the non—cardiac image
which has been produced with ¢’ = 0 to force equal weights
for all planes. The images show optimal quality for low
heart rates and less optimal quality for the high heart rate
case. This is not surprising, since ASSR is a partial scan
algorithm that makes use of 180° data always and its tem-

Fig. 2. ASSR, 16 x 1 mm collimation, d = 8 mm. The slices show
a slight decrease of noise and an increase of artifacts when using
all planes with equal weights (¢ = 0, top) in comparison to using
only the optimal planes (g = co, bottom). (0/100)

poral resolution is t,01/2. In that respect, it is similar to
the partial scan cardiac algorithm 180°MCD [11].
Reconstructions of the same data and the same slices
using the multi-slice gold standard 180°MCI (Multi-slice
Cardio Interpolation, images not shown here) are slightly
superior due to the better temporal resolution of the multi—
phase approach 180°MCI. However, 180°MCI is not suited
for cone-beam scanners since 180°MCI does not take into
account the cone—beam nature of the x—rays. To demon-
strate this, we have reconstructed the thorax phantom in
the cardio mode (¢' = o) using ASSR and 180°MCI. The
results (figure 4) show clearly the advantages of ASSR over
180°MCI. Especially in the humerus severe geometric dis-
tortions appear in 180°MCI. Some of the spheres appear
to be egg—shaped. Artifacts are also apparent in the ASSR
reconstruction. These are due to using only a few recon-
struction positions (¢" = o0). In general, for ASSR no ge-
ometric distortions appear and the artifacts are less severe

than for 180°MCI.

VII. DiscussioN

Our results indicate that there is no significant disadvan-
tage of performing overlapping data acquisition and using
non—-optimal reconstruction planes instead of doing a high—
pitch scan with optimal planes only. For transaxial planes,
however, it seems to be of interest to be able to change the
weight strategy on-line.

Of course, if the tube current is not the restricting factor
of the scan, overlapping data acquisition should be avoided
and the pitch should be set to 1.5, which is the optimal
pitch for ASSR. Low pitch should be used only if one in-
tends to accumulate dose to further decrease the image
noise.

For the new cardiac approach, promising results can be
obtained for the cardiac motion phantom within a wide
range of heart rates.



Non—cardiac (zero exponent)

High motion phase (cr :750%)

Fig. 3. ASSR for various weighting strategies and low (left column,
70 min—!) and high (right column, 130 min—!) heart rates. The
MPRs extend over 17 mm in the z—direction and show the 3 mm
calcifications. Image noise o is given for a circular ROI centered
in the lower heart region. (0/500)

180°MCI ASSR (cardio mode)

Fig. 4. 180°MCI and ASSR for fg = 70 min—!. (0/100)

The conclusions that can be drawn from a simulation
study are restricted, however. The algorithms, the weight-
ing strategies and the cardiac reconstruction will undergo

further evaluation using real patient data and the expertise
of radiologists.
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1. INTRODUCTION

Iterative reconstruction techniques for reconstruction of
Positron Emission Tomography (PET) data are usually too time
consuming on most single processor machines that are afford-
able. This is especially true for the HRRT (High Resolution
Research Tomograph) which demands sinogram dimension of
unsurpassed size (presently one 3D data set consists of 2209 si-
nograms with 256 radial elements and 288 views), [1].

One strategy to drastically improve reconstruction time is
the use of Fourier Rebinning (FORE), [4]: the 3D scan is trans-
formed into the format of a 2D scan with 207 sinograms (in
case of the HRRT) preserving the information of the 3D data.
Thus the reconstruction problem is reduced to reconstructing
independent 2D slices and offers a very convenient approach to
cluster computing.

In a previous work we used this approach to scale down the
reconstruction time with implementations utilizing RPC or
Syngo! communication facilities on a Windows NT network of
commodity PCs and with the first version of our dedicated re-
construction cluster (seven four-processor-systems, Intel PIII
@ 700 MHz, 1 GB RAM, switched fast ethernet), [6].

These previous results have encouraged us to upgrade our
dedicated cluster to Myrinet networking equipment [8] as we
could identify fast ethernet bandwidth as the limiting factor
(less so for special purpose network topologies with multiple
fast ethernet cards per node). We think that we now have a
good basis to tackle a more complex reconstruction method for
cluster adaption: OSEM3D in the implementation of C. Michel
[9]. This reconstruction method has produced the best results
for the HRRT data so far and is more suitable for an adequate
treatment of the sinogram gaps that result from the detector ge-
ometry of the HRRT.

We are also in the process of developing a complementary
suite of tools to integrate cluster reconstruction for HRRT and
ECAT7 data into our clinical routine.

II. MATERIAL AND METHODS

A. Previous work based on RPC and Syngo

The BeeHive package was mainly developed to utilize idle
Windows NT user work stations for distributed computing of
FORE-preprocessed sinograms, [5]. It consists of three compo-

1 Syngo by Siemens AG is “a common language for software applications in
the field of medical technology* (www.syngo.com).
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Figure 1: Influence of cluster size on reconstruction time for 207 sli-
ces (approx. 70 ML-EM iterations each), lin-log-plot, on our dedica-
ted reconstruction cluster. Reconstruction time drops from 38 min in
this example to well under 2 min for a full (FORE preprocessed)
HRRT data set.

nents: (a) the “busy bees” (slaves) which are installed (auto-
matically) on all NT machines, (b) the “BeeKeeper” compo-
nent that is responsible for adding new bees to the beehive, and
(c) the “QueenBee” (master) which distributes work among the
“bees” and collects results. The idea is roughly this: have a sin-
gle scheduling thread on the master maintain a list of jobs and a
list of workers (a single thread to keep the algorithm simple
and to avoid network bottlenecks/deadlocks). Distribute the
jobs in a round-robin way, use redundancy where possible and
allow for runtime reconfigurations of the slaves, have one sin-
gle binary (90 KB) that is easy to maintain (network update,
single click de/installation). As the original reconstruction
problem by virtue of FORE-preprocessing is rendered
“embarrassingly parallel”, we did not see the need to rely on
the usual message passing libraries (MPI, PVM, s. section B).

As described above, by using FORE the 3D-data sets are
transformed (“rebinned”) to independent 2D-data sets that can
be reconstructed by any fast 2D reconstruction method, e.g.
OSEM. Currently, we are using Cologne-HOSP, [3], that is
based on Schmidlin’s HOSP algorithm, [2], and has been port-
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Figure 2: (a) CPU usage of one SGI 1450 node (four processors) of
the HeinzelCluster during Syngo-based reconstruction of FORE-pre-
processed data. This reconstruction involves 26 CPUs on seven nodes.
(b) Same reconstruction job with Myrinet-GM-based implementation
of BeeHive: observe the difference in idle time between productive
intervals.
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ed to Solaris Sparc, IRIX, Linux x86, PowerMac and Windows
NT.

One disadvantage of the original RPC version is the polling
approach of the scheduler which can create a lot of network
overhead: each Bee is queried periodically for status informa-
tion which can be a serious handicap when the cluster is inho-
mogeneous (too much time spent on slow machines). Syngo
offers a powerful set of tools based on the ACE framework,
[10], for implementing a pushing mechanism instead: the
scheduler is notified about the status of a reconstruction bee
automatically (proxy-return objects). Using Syngo also facili-
tates integration into the HRRT software environment (data-
base access, reconstruction queues, visualization tools) as this
is also based on the Syngo framework. Machines that only run
a Syngo hosted reconstruction engine (backend) do not need a
full Syngo distribution, a very small and easily maintainable
subset suffices that does not create any overhead if not running.

We found that the simple RPC-based approach works fine
for small homogeneous clusters (8 machines, speedup approx.
a factor of 7) and that the more refined Syngo approach still
gives good performance for homogeneous clusters of more
than twice that size, s. Figure 1 and Table 1.

B. HeinzelCluster, BeeHive over Myrinet GM

The HeinzelCluster consists of seven SGI 1450 nodes, [15]:
each has four Intel PIII Xeon processors @ 700 MHz, 1 MB
L2-Cache, 1 GB RAM,; all networked with full duplex fast
ethernet on a Bay Stack 28115 switch; Myrinet M2M-PCI 64
A-2 cards and a Myrinet M2M SW16 switch and currently run-
ning Window NT. We decided against using Gigabit Ethernet
as an alternative to Myrinet because this technology is limited
to about 35 MB/s sustained data transfer by the IP stack han-

dling, [11]. Myrinet is not much more expensive and gives
much better performance: with our own Myrinet GM-based
software (s.b.) we can transfer blocks of 52 MB size with a sus-
tained rate of 130 MB/s and still expect more with the new
generation “Myrinet 2000 hardware.

However, superior performance requires using special im-
plementations of the message passing standard MPIch, [8], or
adapting existing applications to GM, [12], a Myrinet propri-
etary message passing driver that is available for all major plat-
forms.

We favor GM over standard message passing interfaces
such as MPI and PVM (parallel virtual machine) because (apart
from one scatter-gather function) we think that GM offers all
the MPI functionality we need (s. C)—and on a standard NT
system it just requires installing a single driver (like another
regular ethernet card). As is pointed out in [13], MPI and PVM
implementations handle network problems and hardware mal-
functions usually quite ungracefully: GM is more robust and
can resend lost packets automatically.

# CPUs (Bees) | Speedup Syngo |Speedup Myrinet

8 7.36 7.72
12 9.86 11.25
16 12.55 14.98
20 16.16 17.81
24 17.40 21.34
26 19.67 23.32

Table 1: Comparison of speedup BeeHive Syngo

vs BeeHive Myrinet.

We have developed a little API that just requires linking
one library and using one initialization sequence in order to
send GM messages to any node of the cluster. The result is a
Myrinet-GM based version of BeeHive that is fast, slim and
conceptually very simple: on the QueenBee (master) and on
each Bee (slave), i.e. on each of the seven cluster nodes, one
GM event loop is running in its own thread and continuously
polling for messages from other nodes (latency is known to be
extremely good). Surprisingly, this creates very little overhead
and allows for straight-forward event handling by implement-
ing hooks that start appropriate worker threads, e.g. we send a
message string that starts with a predefined identifyer (arbitrary
integer): “4711”—receive sinogram of known dimensions (rest
of message) and start reconstruction thread.

As can be seen from Fig. 2, with Myrinet-based BeeHive
we visibly reduce idle time between “number crunching” peri-
ods.

C. OSEM3D acceleration

Porting the original Alpha version of OSEM3D (mostly
ANSI C) to Windows NT was a straight-forward task. Our
strategy to reduce reconstruction time (1 iteration for current
HRRT data sets using the direct port on one Intel Pentium
@700 MHz takes about 11 h) consists of three steps: (a) par-
allelization for one node with four processors (shared memo-
ry), (b) higher level parallelization for the seven nodes to in-



volve a reasonable number of CPUs (probably all) in the
OSEM3D reconstruction, (c¢) platform specific optimizations.

We chose to work on (a) first, because a profile run clearly
shows that more than 80% of the total wall time is spent inside
the routines for forward and backprojection (which is the case
for many iterative algorithms).

Thus we adapted the forward and back projection routines
for multi-threaded execution with a wrapper routine (outer
loop) leaving most of the original (unoptimized) engine un-
touched. This was an easy choice (and something Fortran com-

execution time PCPIII SGI 1450 | SGI 1450 Compaq
[min] 600 Mhz 1Thread | 4 Threads | Alpha EV67

Normfac 259 212 73 76

1 Iteration 569 453 156 132

Total 828 665 229 208

Table 2: Multi-threaded implementation vs direct port. “Normfac”
refers to a file of precomputed factors, s.b.

pilers do by default on high perfomance platforms, [13]), e.g.
the back projection algorithm is voxel driven so every thread
takes over the voxels of 207/threads planes.

In case of the SGI 1450 running 4 threads, approx. 75% of
the 229 min total time have been spent in either the forward or
back projection routine, i.e. have been executed in parallel
(which is acceptable for modifying only two routines and leav-
ing almost everything else “as is””). The speedup of about 3 cor-
relates nicely to the number of processors (4) and the time
spent in parallel mode.

Apart from details in the thread synchronization (POSIX vs
NT/2000), this approach should work for all multi-processor
systems.

Approach (b) tackles parallelization with a much coarser
granularity and is similar for the calculation of the “Normfac”
data (precomputed factors needed only once for all iterations)
and the main iteration loop. We propose to run the innermost
loop (over the segments) of the pseudocode listing in Figure 3
in parallel. It follows that the theoretical speedup can not ex-
ceed the number of segments, which is 15 for the current con-
figuration of the HRRT. After completion of the isegment-
loop, the cimage volumes of all nodes must be collected and
added (52 MB per cluster node) and for parallel execution of
the next segment all nodes have to be synchronized by updat-
ing their local image buffer (another 52 MB per cluster node).

Finally, we believe that with (c) there is a significant poten-
tial for platform specific tuning we should investigate. Howev-
er, we want to perform these optimizations last in order to stay
as close to the original code as long as possible. Here the most
relevant optimizations will be directly linked to the challenge
of using the Pentium III’s advanced (and often neglected) fea-
tures more efficiently. First tests with the new Intel 5.0 compil-
er plugin for the Microsoft Visual 6 C++ compiler have been
encouraging. In specific, we have successfully vectorized por-
tions of code using compiler intrinsics (rather than Assembler
code). With the Streaming SIMD extensions (SSE) of the PIII

for ( iter ) {
for ( isubset ) {

zero ( cimage )

for ( isegment ) {
forward3D ( image, &estimate )
corrections ( trues, norm, atten,

S&estimate )

backproj3D ( estimate, &cimage )

}

image = image * cimage

}

}
Figure 3: Pseudocode for OSEM3D (non-parallel) main loop.
image and cimage are image volumes, trues, normand atten
hold the appropriate projection data for segment isegment.
that can give a speedup of up to 4 on single precision float op-
erations. Furthermore, the PIII processor is rather dependent on
proper alignment of operands for many of its more efficient op-
erations (the Alpha processor is much more lenient, admitted-
ly). All these changes will also be beneficial to potential Linux
applications (on the Intel platform) of the code.

D. BeeQ, Vinci and clinical routine

In previous versions of BeeHive we used the BeeKeeper
component for automatic network enabled update of the Bee
service. With BeeQ we have extended the original concept:
Bee( is running as a service (similar to a Unix daemon) on ev-
ery node of the HeinzelCluster and can run any program local-
ly that does not require a graphical user interface. Communica-
tions have been realized with named pipes (but could easily be
changed to TCP/IP sockets). BeeQ redirects stdin and stdout to
log files and/or reports output directly (much in the fashion of
telnet). It maintains a dynamic list of all processes it controls
and allows to suspend and kill them. It has a built-in ftp client;
processes information which jobs should run concurrently and
which not and in what sequence; it can communicate with oth-
er instances of BeeQ on the cluster for load balancing. We in-
tend to use BeeQ for monitoring a “heart beat” function and if
necessary restart essential services.

In addition to the obvious need for a reconstruction cluster
with HRRT data sets, we intend to use the HeinzelCluster also
for reconstruction of especially demanding data sets from our
ECAT HR and ECAT EXACT scanners (e.g. multi-frame,
multi-bed studies). Data transfer from the Sun workstations
running CTI’s ECAT 7 software has been realized via ftp and
gives a performace of 9.5 MB/s. For routine handling, it is nec-
essary to incorporate the cluster reconstruction option into the
console’s user interface. This can be realized with a CAPP
module that sends commands to the cluster via rsh to a redirec-
tor module that forwards stdin to BeeQ.

We currently can communicate with instances of BeeQ
through a terminal-like tool that runs on the Windows platform
from anywhere in the network (utilizing the network protocols
TCP/IP or NetBUI), a subset of its functionality will be avail-
able as an IDL module (call external).

Reconstructions of HRRT data usually produce image vol-
umes exceeding 50 MB: there is a new challenge to visualize
these image volumes and the even more demanding sinograms



(> 300 MB, short integer format) efficiently. With Vinci, we
have developed an application for Windows NT/2000 (C++
with MFC) that is entirely true color based and takes advantage
of some features every modern PC graphic board offers. We
have incorporated the reslicing engine that drives the MPITool,
[16], which has been the institute’s workhorse for visualization
so far. Vinci also supports the ECAT7 data format and can be
integrated into the Syngo frontend on the HRRT console; it
only requires moderate hardware resources (memory require-
ments depend on how many image volumes you want to look
at simultaneously) and was designed to run well on midrange
laptop systems. In addition, we use parts of its true color en-
gine for online visualization of reconstruction results.

ITII. RESULTS

With BeeHive over Myrinet and HRRT data we are quite
close to the theoretical maximum speedup of the cluster while
having the benefits of a simple scheduling approach. However,
there is still some work ahead to speedup the preprocessing
steps: we have started work on running FORE on more than
one CPU. This is even more important for the more computa-
tionally demanding FORE-J, [17], and FORE-X, [18], flavours
which we hope to evaluate for HRRT data in a collaboration
with M. Deftrise and X. Liu of the Department of Nuclear Med-
icine, Free University Brussels, Belgium.

With approach (a) of our strategy to accelerate OSEM3D
one cluster node already performs in the range of an Alpha
EV67. It remains to be seen how much more acceleration ap-
proaches (b) and (c) will provide.

IV. CONCLUSION

HeinzelCluster with BeeHive over Myrinet is a suitable
platform for several reconstruction strategies, especially for
HRRT data. Future work with this platform might include list-
mode reconstruction with correction of motion artefacts.
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Evaluation of an exact Fourier rebinning
algorithm for alarge aperture PET scanner

Xuan Liu, Christian Michel, Stefan Vollmar, Klaus Wienhard, Mike Casey, Michel Defrise

INTRODUCTION

The reconstruction of 3D PET data is a computationally
intensive task, especially for dynamic or whole-body studies
involving several scans of the same patient. Depending on the
available computational hardware, on the type of studies and
on the required patient throughput, reconstruction time may
still limits the clinical applications of 3D PET. This
motivates continuing research for faster reconstruction
algorithms for 3D PET data. The fastest methods to date are
based on rebinning methods [1-7] which factor the 3D field-of-
view into a stack of parallel transaxial slices and estimate,
starting from the measured data, the 2D Radon transform (the
sinogram) of the tracer distribution in each of these dices.
Rebinning thereby reduces the redundant 3D data to a stack of
independent 2D sinograms which can be reconstructed using

either 2D filtered-backprojection (FBP) or 2D iterative
algorithms such as OSEM.
A practical rebinning method is the Fourier rebinning

algorithm [FORE 4,5,6,8]. This algorithm is based on the
application of the frequency-distance relation to the 2D Fourier
transform of each oblique sinogram. The frequency-distance
relation is accurate only for large values of the frequency. This
iswhy the accuracy of FORE decreases with increasing values
of the angle q between the LORs and the transaxial dlices.
Nevertheless, this algorithm is used routinely by severa
groups and was shown to be sufficiently accurate for most
clinica studies with the current multi-ring PET scanners
which have axial apertures not exceeding about ¢, »15
degrees. In addition to its approximate character, a second
limitation of FORE isthat it modifies the statistical properties
of the data: contrary to the measured 3D data, the rebinned
sinograms are not distributed as independent Poisson variables
and hence should not in principle be reconstructed using
standard statistical algorithms such as OSEM. In fact, OSEM
isavery robust algorithm which has been applied with good
resultsto 2D data rebinned using FORE [8,9,10].

Owing to these two limitations -the approximate character of
FORE and its complex effect on data statistics- it is likely that
fully 3D iterative agorithms [see e.g. 7] will eventualy
replace the rebinning algorithms, at least if the available
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computation power increases more rapidly than the number of
LORs acquired by the scanners. Todate, however, fast
reconstruction using rebinning algorithms remains attractive
for scanners such asthe ECAT HHRT [14,15] which acquire
data sets which are still too large for a routine application of
3D iterative algorithms. But these scanners are precisely those
for which the axial aperture islargest (it exceeds 20 degrees),
and for which the approximation in FORE may degrade axial
resolution. This was recently demonstrated with phantom
studies on the ECAT HRRT scanner [15,16].

These observations suggest to investigate the potential benefit
of applying an exact rebinning algorithm, FORE-J[12,13], to
the HRRT scanner. This algorithm is exact but can be applied
directly to axially truncated data, avoiding the reprojection
step required by the reprojection method [3DRP, 17] or by the
other exact rebinning algorithm described in the literature,
FOREX [18]. The algorithm FORE-J is based on the property
that the 3D X-ray transform of a function -the quantity
sampled by a 3D PET acquisition- must be solution to the 2nd
order partial differential equation (PDE) first studied by F.
John. From a practical point of view, FORE-J is easy to
implement since it has the same structure as FORE. The only
modification is a small correction added to each oblique
sinogram prior to rebinning. The calculation of this correction
is fast numerically but involves a second derivative of the data
with respect to the axial variable z, a quantity which is
sensitive to noise.

Until now, FORE-J has only been applied to simulated data
which did not model the axial undersampling used in practice
or the effect of gapsin the detectors.

The am of the present paper is to evaluate the practica
usefulness of the algorithm using data from the ECAT HRRT
scanner. |n particular we

- compare FORE-J with FORE in terms of spatial resolution
and clinical image quality,

- investigate the influence of the detector gaps on the use of
rebinning agorithms,

- investigate stable yet accurate methods to estimate the second
derivative in the FORE-J correction term.

IMPLEMENTATION OF FORE-J

The HRRT scanner has an axial field-of-view of 25.2 cm and
comprises 104 "rings' of detectors. Each "ring" has an
octogonal geometry. The list mode data from the HRRT are
reorganized into sinograms with 256 radial elements and 288



angular samples. The radia sinogram sampling interval is
1.22 mm. Because of the junctions between the eight sides of
the octogonal detector, the sinograms cannot be measured in
eight diagonal bands called "gaps'. In the angular variable,
each gap covers about 6 samples out of the 288.

To reduce the amount of data to store and process, axial
angular undersampling (compression) is normally used in the
HRRT scanner. In this paper we use the current sinogram set
which consists of 2209 sinograms (Span 9, ring difference 67,
325.7 Mbyte) and recovers 88% of the LOR information.

Before applying Fourier based rebinning the gaps in each
sinograms are filled with alinear interpolation in the angular
direction, using the standard routine in the ECAT software.

The basic equation of the FORE-J algorithm is[12,13]
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In this equation, P,4(w,K,z,) isthe 2D Fourier transform of
the rebinned sinogram for the transaxia slicez, and P(®,k,z,0)
isthe 2D Fourier transform of a measured oblique sinogram,
where § is the tangent of the angle g between the oblique
LORs and the transaxia plane, and zisthe axial coordinate of
the mid-point of the LORs. The variables o and k denote
respectively the radial and azimuthal frequencies. The first term
in the RHS corresponds to the FORE algorithm, and the
second term (second line) is the additive correction in the
FORE-J method. The frequenciesw=0 (in practice smaller than
some small threshold) are rebinned using a single-dice
rebinning approach, using only small values of q.

For the result presented in this abstract, the second derivative
of the sinograms with respect to the axial variable z (the slice
index) was estimated using a three point mask (1,-2,1).
Alternative methods will be tested.

After rebinning, each sinogram was reconstructed using 2D
filtered-backprojection with aramp filter (rectangular window
cut-off at Nyquist's frequency). For the brain scan shown
below, the resulting image was smoothed with a 3D gaussian
filter witha FWHM of 1.6 pixel.

RESULTS

Simulated line source

A line source located in the central transaxial slice (FWHM
2.4 mm) was simulated as a digital 3D image, and 3D data

were generated by ray tracing (Joseph's reprojection method
with linear interpolation) through this digital image. The axial
and transaxial FWHM of the reconstructed line source was
estimated as a function of the position along the line.

Figure 1 shows the results obtained with FORE-J, with and
without simulated gaps. In the absence of gaps, the transaxial
and axial resolutions are almost independent of the radia
position, as could be expected since the algorithm is exact and
the simulation did not model the position dependence of the
detector response. When the gaps are present and are filled by
interpolation before rebinning, the axial resolution is degraded
by about 0.5 mm. Note that the effect of the gaps on the
resolution depends on the radial position.

The comparison with the approximate algorithm FORE (figure
2) illustrates the potentia improvement of image quality
allowed by the use of an exact rebinning algorithm, at least for
alarge aperture scanner such asthe HRRT.
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Brain scan

An FDG brain scan was reconstructed using both FORE and
FORE-J, with a voxel size of 1.22 mm. The totd
reconstruction time for the two algorithms was respectively
500 s and 717 s. The reconstructions are very similar but
FORE-J introduces faint artefacts which appear as horizontal
lines in the coronal and sagittal slices, and asrings in the
transaxial sections (figures 3). These artefacts are not visible
with FORE (not shown) and are tentatively attributed to noise
propagation in the calculation of the second derivative. These
artefacts are hardly visible on the smoothed imagesin figure 4
and 5, which would be used in practice. A close inspection of
these images, and a comparison with a 3D OSEM
reconstruction (8 subsets, 2 iterations, about 4 hours per
iteration) reveals several detailsin the cortical structureswhich
are better reproduced by the FORE-J reconstruction than by
FORE. One example shown in figure 6 is the separation
between the cortex and the cerebellum (tentorium cerebelli).

CONCLUSION

Even though the spatial resolution is aso limited by the
presence of gaps and by the axial undersampling, the exact
rebinning algorithm FORE-J significantly improves the axial
resolution for the ECAT HRRT scanner. The implementation
of FORE-J only requires a minor modification of FORE,
which only slightly increases the total reconstruction time.
FORE-J appears to better reveal some fine details in the brain
scan. However, the preliminary implementation of FORE-J
introduces low level artefacts. Alternative methods to discretize
the second derivative term in FORE-J will be investigated, and
additional tests with phantom ("point" source) and clinical data
will be
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Figure 3. Recon;fruétion of the brain sc with the exact rebinning algorithm FORE-J, followed by 2D filtered-bacprojection

with arectangular window. Note the ringing artefacts in the transaxial dice.



Figure 4. Reconstruction of the brain scan with the exact rebinning a gorithm FORE-J, followed by 2D filtered-bacprojection and
3D Gaussian post smoothing (FWHM 1.6 pixel).

Figure 5. Reconstruction of the brain scan with the approximate rebinning algorithm FORE, followed by 2D filtered-
bacprojection and 3D Gaussian post smoothing (FWHM 1.6 pixel).

Figure 6. Corona dlice of the brain scan. Left: 3D OSEM with scatter correction, 8 subsets, 2 iterations. Middle: FORE+FBP as
in figure 5, Right: FORE-J+FBP as in figure 4 (both without scatter correction). The gray scale is the same for FORE and
FORE-J, but not for 3D OSEM. Note the different noise structure and better contrast in the scatter corrected 3D-OSEM image,
and the finer detail (arrow) seen in FORE-J than with FORE.



Performance of 3D RAMLA with Smooth Basis
Functions on Fully 3D PET Data

Samuel Matej, Margaret E. Daube-Witherspoon, and Joel S. Karp

Abstract— 3D reconstructions from fully 3D PET data can
yield high-quality images but often at a high computational
cost. To obtain practical data processing and reconstruction
times, simplified and less precise approaches are used in the
routine clinical use. We studied the feasibility of using the
3D row action maximum likelihood algorithm (3D RAMLA)
with 3D spherically-symmetric basis functions (blobs) lo-
cated on an efficient spatial (body centered cubic) grid for
clinical PET data. The BCC grid provides more uniform
distribution of the basis functions that represent the recon-
structed object and decrease the computational time. An-
other development used in our study is a fast Fourier based
forward projector that provides very fast calculation of the
attenuation coefficients in fully 3D data space. These two
developments move fully 3D reconstruction using appropri-
ate data processing approaches toward clinically practical
times. We are studying the practical effects of the use of
these more precise approaches to fully 3D reconstruction on
clinical data.

Keywords— Fully 3D reconstruction, PET, RAMLA, 2.5D
reconstruction, smooth basis functions, attenuation correc-
tion.

I. INTRODUCTION

ODERN Positron Emission Tomography (PET)

scanners are characterized by a large axial Field Of
View (FOV) which enables acquisition of data from a large
range of oblique angles. Efficient 3D algorithms are needed
to process the fully 3D data provided by those scanners in
clinically reasonable times. In our previous studies [1-3] on
3D image reconstruction for PET we used various iterative
algorithms operating on a series expansion representation
of the volume, where the spatial distribution to be recon-
structed was represented by the superposition of 3D basis
functions [4]. These basis functions, which we call ”blobs,”
are spherically-symmetric with bell-shaped radial profiles.
Using a blob basis function inside the reconstruction pro-
cess preserves the consistent component (true signal) of
the data, thus preserving the resolution of the measured
data, while at the same time suppressing the stochastic
part (noise) of the data, as experimentally confirmed in
[1]. Although filtering also suppresses noise, it can not pre-
serve the spatial resolution of the data at the same time.
In all of our studies, the 3D iterative reconstructions us-
ing blobs provided substantial and consistent improvement
over the methods using classical basis functions - voxels.
Until recently, the computational demands of the 3D it-
erative algorithms were found to be too high for routine
clinical use.
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Authors are with the Department of Radiology, University of Penn-
sylvania, 423 Guardian Drive, 4th floor Blockley Hall, Philadelphia,
PA 19104, USA (e-mail: matej@mipg.upenn.edu).

To decrease reconstruction times, clinical reconstruction
approaches usually involve rebinning of the measured fully
3D data into non-oblique sinogram data within slices, fol-
lowed by slice by slice reconstruction. The most popular,
and clinically used, rebinning technique is Fourier rebin-
ning (FORE) [5]. Rebinning substantially decreases the
volume of the data at the expense of reduced quality caused
by using 2D reconstruction techniques instead of the 3D
methods. In our recent studies [6,7] we evaluated a 2.5D
reconstruction approach (used after FORE) that consider-
ably improves image quality over a pure 2D approach but
with computational demands of the same order as those of
2D techniques. The 2.5D reconstruction considerably de-
creases the computational burden because it uses rebinned
data while, at the same time, it takes into consideration
volume nature of the measured data (by using 3D blob ba-
sis functions) and thus keeps some advantages of the 3D
techniques. More precisely, in the 2.5D approach the re-
constructions of the individual slices are coupled, and it-
eration calculations for each projection line are influenced
by, and contribute to, several image slices. In our previ-
ous studies, images reconstructed by 2.5D algorithms were
found to be superior in terms of a number of figures of
merit related to resolution and noise to those produced by
2D algorithms, in which the individual slices are handled
separately [6,7]. However, both 2D and 2.5D approaches
are affected by rebinning approximation errors as the ax-
ial acceptance angle increases [8,9]. For axial acceptance
angles around (or exceeding) +15°, as occurs with some
of the recent commercial PET scanners, FORE approxi-
mation errors already introduce noticeable image artifacts
and nonuniform deterioration of axial resolution. There are
other more precise rebinning approaches [5], they are, how-
ever, computationally more demanding. In addition to the
approximation errors, approaches using rebinned data are
limited because of the lack of proper reconstruction mod-
els taking into account rebinning (and data acquisition)
effects.

Image representation using smooth basis functions pro-
vides an alternative approach that reduces the computa-
tional demands of 3D iterative approaches. This particular
image representation allows utilization of a more advanta-
geous spatial grid, compared to the classical voxel (simple
cubic) grid. It also leads to a more uniform 3D distribu-
tion of the basis functions (grid points) throughout the 3D
space, using Body Centered Cubic (BCC) grid based on
the effective spatial sampling [10]. This, in turn, allows
one to decrease the grid density (number of grid points)
without compromising the quality of the image represen-
tation. This result has been demonstrated in our previous



studies using simulated data [10] and is reevaluated in this
current study using measured PET data.

Proper treatment and utilization of attenuation informa-
tion plays an important role in whole body PET imaging
[11]. For the attenuation information to be treated prop-
erly, the attenuation coefficients are needed on the same
set of LORs as those of the acquired emission data. In
the fully 3D data case, the measured emission data has to
be corrected for attenuation before being processed by re-
binning or 3D reconstruction. For 3D iterative techniques,
the attenuation coefficients can be utilized directly within
the reconstruction model. Most typically, the attenua-
tion coefficients are calculated by the forward projection
of (preprocessed) transmission images. However, forward
projection into 4D parameter (fully 3D data) space is a
time consuming operation which might take considerably
more time than the reconstruction itself, as in the case of
FORE+2D/2.5D reconstruction approaches. For this rea-
son, simplified approaches are often used in routine clinical
use, such as rebinning of raw emission data without attenu-
ation correction and applying (2D) attenuation correction
afterwards. This substantially speeds-up the attenuation
correction calculations, since only non-oblique attenuation
factors are needed, but introduces additional errors into
the reconstruction process. As part of the development of
Direct Fourier Reconstruction with Fourier Reprojection
(3D_FRP) [12], we have implemented fast Fourier based
forward projector (FoProj) allowing for very fast calcula-
tion of fully 3D attenuation data and making proper treat-
ment of the attenuation information within the fully 3D
reconstruction process more practical.

In this work, we compare performance of the 3D and
2.5D iterative Row Action Maximum Likelihood Algorithm
(RAMLA) [3,13] using blobs on the efficient spatial (BCC)
grid. We also evaluate the impact of using attenuation
correction information in the reconstruction algorithm. 3D
PET data obtained from a clinical C-PET (ADAC UGM)
whole body scanner are used in our study.

II. METHODS
A. Reconstruction Algorithms

The row action maximum likelihood algorithm (RAMLA)
[13] was developed as a faster alternative to the maximum
likelihood expectation maximization (ML-EM) algorithm
for maximizing the Poisson likelihood in PET. In RAMLA,
the reconstructed image is updated for each projection line
(row of the system matrix) in a controlled way using a
relaxation parameter. The (k + 1)’th update step, where
k > 0, produces an image represented by a set of basis
function coefficients {c§-k+1) }7_1 using the formula

(k+1) _ (k) A ctB) Gy “1) a 1
0 = o (i 1w

where iy = [k(modI) + 1], g;, and (a;,,c®)) represent the
measured data and forward projection for the ig’th line,
respectively, and )y is the relaxation parameter (including
normalization factor) fulfilling the condition Aga;,,; < 1

for every iy, j [13]. The data are accessed using a special
ordering scheme [14] to ensure that the sequential projec-
tion lines are as orthogonal as possible, thus considerably
speeding-up the rate of convergence. RAMLA achieves sta-
ble performance and relative independence on the starting
point via an appropriately chosen relaxation parameter,
controlling the amount of updates/corrections in each iter-
ation step.

In the studies reported in this paper we used a 3D imple-
mentation of RAMLA using blobs - modified Kaiser-Bessel
basis functions of second order [4] located on the standard
cubic (voxel) grid and on the efficient BCC grid [10] of
various grid step sizes. To study the improvement of the
true 3D reconstruction over the (pseudo 3D) reconstruction
from rebinned data we employed 2.5D RAMLA [6], which
is currently our best reconstruction technique for rebinned
PET data.

We applied 3D RAMLA and 2.5D RAMLA (after FORE)
to phantom and patient datasets. To determine optimal
parameters for each reconstruction algorithm for a given
activity distribution, the data were reconstructed and an-
alyzed for a range of parameters and blob sizes (FWHM)
by varying the blob radius a (2-3, relative to voxel size
of 4mm), blob shape parameter a (chosen as described
by Matej and Lewitt [1,10]), grid spacing g for the BCC
grid (1.8-2.26, relative to voxel size), and relaxation pa-
rameter A (0.001-0.1). In most cases, performing more
than one iteration of RAMLA did not significantly im-
prove image quality. The representative reconstruction
times for a set of comparable reconstruction parameters
(a = 2.5, a = 8.63, g = 2.00, 1 iteration, data: 128 radial
bins, 64 slices, 96 views, 7 tils, image: 144x144x64 with
4x4x4mm?® voxels) obtained on single processor Sparc Ul-
tra 10 (440MHz) were: 3D RAMLA (regular grid) 35:20
(min:sec), 3D RAMLA (BCC grid) 6:45, 2.5D RAMLA
1:56 (including 1min for FORE).

B. Attenuation Effects

We studied various ways of utilization of attenuation in-
formation: reconstructions from data precorrected for at-
tenuation in the fully 3D data space (4DAC), date cor-
rected in the rebinned data space (2DAC), and recon-
structions using attenuation information within the system
model (sysAC). The attenuation coefficients were obtained
by forward projection of the transmission images. Trans-
mission images were reconstructed from a !*7Cs single-
photon source transmission data, rescaled to 511-keV, and
segmented [15]. The transmission data were rebinned us-
ing the single-slice rebinning algorithm (SSRB) [16] and
corrected for emission contamination [17].

Forward projection was calculated using fast Fourier
based projector (FoProj) [12]. The computation time for
complete 4D attenuation coefficient/correction data (im-
age:144x144x64, data:128x64x96x7) was 0.8 min, as com-
pared to 3.7 min for the forward projection based on the
Siddon algorithm [18]. Although, both times are clin-
ically reasonable for this image size, the ratio between
them increases approximately proportionally to the im-



age size increase (based on the computation complexity
of O(N3logN) for FoProj versus O(N*) for Siddon). Ad-
ditional substantial speed-up of the FoProj algorithm can
be obtained by using (off-the-shelf) FFT processor boards.

C. Torso Phantom Studies

The IEC phantom distribution recently adopted by the
NEMA Coincidence Imaging Task Force for the measure-
ment of image quality [19] was used to mimic patient imag-
ing of the torso. The distribution consists of a torso phan-
tom, containing hot and cold spheres in a warm back-
ground. The hot spheres have diameters of 1.0, 1.3, 1.7,
and 2.2 cm; the cold spheres have diameters of 2.8 and 3.7
cm. A 5 cm diameter lung-like insert is also placed in the
center of the phantom to provide a nonuniform attenuation
distribution. The background was filled with ®F at an ac-
tivity concentration typical of what is seen in patient FDG
studies (250MBq in 70kg, or 3.6kBq/cc). The hot spheres
were filled with an activity concentration of 30 kBq/cc, for
a “tumor”:background activity ratio of 8:1. Scan durations
of 3, 6, and 12 min were selected to generate a wide range
of count densities. The ADAC UGM C-PET scanner with
a maximum axial acceptance angle of £15°, sorted into 7
tilt angles, was used.

To quantitate the performance of the algorithms, regions
of interest (ROIs) with diameters equal to the physical in-
ner diameter of each sphere were drawn on the slice through
the centers of the spheres. Twelve ROIs of the same sizes
as those for the spheres were drawn throughout the back-
ground in the central slice, as well as in slices £8 mm and
420 mm away. The coefficient of variation of the means in
these 60 background ROIs was determined for each sphere
size as a measure of the background variability. The hot
sphere contrast recovery coefficient (CRChot) was calcu-
lated as

CRChot = (Chot/Cokg — 1)/(anot/abrg — 1) (2)

where Chor and Cyig are the average of the counts measured
in the hot sphere ROI and the average of the counts in all 60
background ROIs, respectively, and apot/ aprg is the ratio
of the activities in the hot sphere and background (8 in
this study). The cold sphere contrast recovery coefficient
(CRC01q) was calculated as

CRCrcola = (1 — Ceota/Chiyg) (3)

where C.,1q is the average of the counts measured in the
cold sphere ROI.

D. Whole-body Patient Studies

Several clinical whole-body patient studies were acquired
after injection of 250MBq/70kg of ['*F]-FDG on the ADAC
UGM C-PET scanner. The five-frame studies covered 70
cm axially. The acquisition followed an interleaved emis-
sion (6 min) / transmission (1.5 min) protocol.

III. RESULTS AND DISCUSSION

Figure 1 shows for the IEC phantom data a plot of con-
trast vs. background variability for the 6-min scan for 3D

BCC Grid vs. Voxel Grid
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Fig. 1. Plots for the 6 spheres (4 smallest are hot, 2 largest are
cold) for 6-min scan. The open symbols are for various blob and grid
parameters (a:a:g = 2:3.6:2.26, 3:9.5:2.26, 2.5:8.63:2.00, 3:13.06:1.8)
and various A for 3D RAMLA using BCC grid. The closed sym-
bols are for one representative reconstruction by slower version of
RAMLA (a:a = 3.0:12.95) using standard cubic grid. We can obtain
comparable contrast/variability performance with RAMLA _BCC for
an appropriate choice of blob/grid parameters as with slower version
of 3D RAMLA, but in about 1/5 the reconstruction time.

RAMLA _BCC using various blob, grid and A parameters.
The plots for each feature size form approximately a single
curve. The points representing results for 3D RAMLA us-
ing a regular cubic grid (solid symbols) and optimal param-
eters (based on our previous studies) lie on the same curves,
showing that the two methods provide similar contrast ver-
sus noise tradeoff for an appropriate choice of parameters.
At the same time, RAMLA _BCC provide about 5.2-times
shorter reconstruction time. The comparable quality of the
two methods was also confirmed by the visual observation
of the reconstructed phantom and patient images.

Figure 2 shows example of the study using IEC phan-
tom comparing 2.5D reconstruction with 2D attenuation
precorrection done after FORE to the 3D RAMLA (BCC)
with system attenuation correction within the model. The
first approach represents a simplification of the theory, but
as can be seen in the left image, it still provides reasonable
images and is often employed in the routine clinical use
because of its low computational demands. The improve-
ment due to proper use of the attenuation information in
the fully 3D reconstruction algorithm is demonstrated by
the increase of the background uniformity and the increase
of the contrast of the features.

Figure 3 shows similar comparison for the whole-body
patient study. On the left is coronal image of 2.5D RAMLA
with pre-correction for attenuation after FORE using 2D
attenuation correction factors. On the right is the corre-
sponding slice for 3D RAMLA with system-modeling of
attenuation effects using 4D attenuation correction factors
generated using FoProj. It is evident that the fully 3D



Fig. 2. 6-min IEC phantom study reconstructed using 2.5D RAMLA
with 2DAC (left side) and 3D RAMLA with sysAC (right side). It
can be seen that the background is more uniform with 3D RAMLA

and system-modeling of attenuation effects.
q . '
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Fig. 3. Patient whole-body study (coronal images) reconstructed
using 2.5D RAMLA with 2DAC (left side) and 3D RAMLA with
sysAC (right side). It can be clearly seen that 3D RAMLA provides
more uniform and less noisy reconstruction. The bladder streak arti-
facts seen throughout the slices of the 2.5D/2DAC reconstruction are
completely absent in the 3D /sysAC reconstruction.

reconstruction together with the system modeling of the
attenuation provides a definite improvement of the image
quality. This is demonstrated by a combination of in-
creased background uniformity, decreased noise and sup-
pression of the bladder artifacts.

Examples shown in Figures 2 and 3 represent two ways
to utilize attenuation information. The first - 2DAC af-
ter FORE - is oversimplified but is a very fast approach,
while the second - system modeling with 4DAC - is more
theoretically sound but is significantly slower. Note, that
due to the developments discussed in this paper, even the
second approach is now becoming feasible for the clinical
use. There are several intermediate possibilities between
these two extremes, such as using 4DAC+FORE+2D it-
erative reconstruction (OS-EM) which is in use at other
clinical sites [11]. Our observations suggest that both the
system modeling of attenuation and the use of a fully 3D
reconstruction algorithm (rather than rebinning) lead to
improvements in image quality. We are currently investi-
gating the influence of individual steps on the reconstruc-
tion quality of the PET images in a more rigorous way
employing measures of contrast and noise, as represented
by the study in Figure 1. The results will be used to guide

the data processing and image reconstruction protocols for
the whole body patient studies.
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Movement Artifacts in Helical CT Cone-Beam
Reconstruction

Claas Bontus', Roland Proksa', Jan Timmer?, Thomas Kohler!, Michael Grass®

Abstract— We designed different dynamical CT phantoms
and simulated a CT Cone-Beam scanner. The obtained pro-
jection data were used as input for three different recon-
struction algorithms. Since the images show movement ar-
tifacts the comparison of different reconstruction algorithms
for helical scanning yields information about the sensitivity
of these algorithms to movement during the scanning pro-
cedure.

Keywords— CT reconstruction, Cone-Beam algorithms,
Helical CT scanning, Movement artifacts.

I. INTRODUCTION

HE next generation of medical CT scanners, viz. Cone-

Beam scanners, necessitates sophisticated reconstruc-
tion algorithms. Those algorithms which are considered
for practical purposes have to be evaluated for numerical
stability, artifacts, reconstruction times and the sensitiv-
ity to all kinds of system imperfections. In a realistic en-
vironment movement is always involved during the scan-
ning procedure. The patient and his/her organs never stay
completely motionless. The evaluation of the different re-
construction algorithms with respect to motion artifacts is
therefore another important aspect. We have designed dif-
ferent dynamical phantoms and tested the resulting level of
artifacts for different helical reconstruction algorithms. In
particular we restricted ourselves to the evaluation of ap-
proximative algorithms, which are of the back-projection
type. For the comparison with a well known acquisition
scheme we used single detector row circular reconstruction
(filtered back-projection) as a gold standard.

II. SCANNER GEOMETRY

For the simulations we used a CT scanner with 40 detec-
tor lines and 1024 elements per line. We set the detector
height equal to 35.34 mm and its width to 904.7 mm, which
corresponds to a fan-angle of 56.96 degrees. The distance of
the focal spot to the rotation axis was chosen to be 515 mm
and the distance of the focal spot to the detector center was
equal to 910 mm. The scanner’s rotation time was set to
0.5 s (2 Hz).

For helical scanning we performed simulations with two
different acquisition schemes, viz. 1-PI and 3-PI mode. In
the 1-PI mode the pitch was set equal to 32.64 mm per
rotation for the head-phantom (see below) and to 26.04 mm
for the abdomen phantoms. In the 3-PI mode it was set
equal to 11.97 mm per rotation for the head-phantom and
to 10.34 mm for the abdomen phantoms.

1 Philips Research Laboratories, Division Technical Systems, Ront-
genstrafle 24-26, 22335 Hamburg, Germany

2 Philips Medical Systems, Veenpluis 4-6, 5680 DA Best, The
Netherlands

III. PHANTOM DESIGN

In the following subsections we describe the phantoms in
detail. They are composed of mathematical objects with
different densities. Some of these objects oscillate during
the scanning procedure. For our analysis we have chosen
relatively high frequencies and amplitudes compared to a
realistic case. By this way we realized a scenario that covers
the worst possible case. The following images indicate the
location of the mathematical objects within the phantoms.
The arrows illustrate the movement.

A. Head phantom

This phantom is intended to approximate movement of
the septum, which can result in severe artifacts in clinical
scanning. The phantom is composed of a cylinder with a
radius of 80 mm consisting of water. The cylinder is sur-
rounded by a shell with a thickness of 10 mm consisting of
bone. The symmetry axis of the cylinder coincides with the
scanner’s rotation axis. Moreover, a box with a thickness
of 2 mm and a length of 22.5 mm is connected to the outer
shell. This box also consists of bone and is supposed to ap-
proximate the septum. For the simulation of the movement
we let this box oscillate with an amplitude of five degrees
and a frequency of 1.51 Hz.

B. Abdomen phantom, colon movement

During inspections of the abdomen colon movement can
also result in artifacts. We therefore designed a phantom,
which is composed of a cylinder consisting of water. This
cylinder has a radius of 170 mm and its symmetry axis
coincides with the rotation axis. For the simulation of the
colon we placed an ellipsoid consisting of air inside the
cylinder. It has a horizontal radius of 50 mm, a vertical
radius of 20 mm and was placed such that its center is
located on the horizontal axis 90 mm from the center of
rotation. For the movement simulation we let this ellipsoid



oscillate horizontally with an amplitude of 10 mm and a
frequency of 2.23 Hz.

C. Abdomen phantom, bladder movement

In a third simulation we studied changes of the water
level in the bladder. For this we approximated the ab-
domen by a cylinder with radius 240 mm consisting of wa-
ter. The bladder was approximated by an ellipsoid with
horizontal radius 90 mm, vertical radius 30 mm and longi-
tudinal radius 30 mm. It was placed on the horizontal axis
with its center located 130 mm from the center of rotation.
The bladder is surrounded by an outer shell consisting of
muscle with a thickness of 10 mm. Its interior consists of
water in the lower half and of air in the upper one. For the
simulation of the movement we made the water level oscil-
late vertically with an amplitude of 5 mm and a frequency
of 1.75 Hz.

IV. RECONSTRUCTION ALGORITHMS

For our analysis we compared the results of three differ-
ent helical reconstruction algorithms with classical circular
reconstruction. In the following we give a short summary of
the reconstruction algorithms used. Each algorithm is an
approximative algorithm and of the filtered back-projection
(FBP) type.

A. The PI-Method

The PI-Method [1] is based on the so-called PI-suf-
ficiency condition, which requires that each object point
gets illuminated over an angular range of 180 degrees. The
pitch mentioned above is chosen such that the acquisition
fulfills this requirement.

For the reconstruction the first step, which has to be
performed, is a parallel rebinning row by row. This yields
data on a virtual planar detector containing the rotation
axis. In the next steps the rebinned data are weighted,
filtered row wise and back-projected.

B. The Three-PI-Method

The n-PI-Methods [2] are a generalization of the PI-
Method. They provide the possibility to choose a smaller
pitch and to use the resulting redundant data. In particular
the algorithm necessitates that each voxel gets illuminated
over an angular range of n x 180 degrees. For the study pre-
sented here we have restricted ourselves to the case n = 3,
i.e. the 3-PI-Method.

Rebinning is again the first step of the reconstruction
algorithm. It yields data on a virtual rectangular detector
containing the rotation axis. Weighting and ramp filtering
of the data have to be performed before the back-projection
step results in the reconstructed images.

C. Advanced single slice rebinning

Advanced single slice rebinning (ASSR) [3] is a re-
construction algorithm for which tilted planes are re-
constructed using classical two-dimensional filtered back-
projection. The system pitch can be chosen equal to the
value of the PI-Method.

In particular the algorithm requires the projection data
to be rebinned onto tilted virtual planes. These data have
to be weighted with factors taking the tilt angle and a
length correction into account. Finally 2D filtered back-
projection yields image data on slices which are not or-
thogonal to the rotation axis. The longitudinal distance
between these slices is chosen smaller than the obtainable
resolution. Using an interpolation step a certain number
of these planes are averaged in order to improve the image
quality.

V. RESULTS AND DISCUSSION

Movement during the scanning procedure results in ar-
tifacts in the reconstructed images. A closer look onto the
details can yield valuable information about the origin of
the artifacts. In the following we summarize our observa-
tions.

Figs. 1-4 contain reconstruction results of the head phan-
tom. The two images within each figure show the best and
worst obtained results for each reconstruction method un-
der consideration. Fig.1 shows the artifacts which result
from the same phantom in classical circular scanning in
combination with a single-line scanner and filtered back-
projection.

Figs. 5-8 contain reconstruction results of the first ab-
domen phantom. We restrict ourselves to images show-
ing the worst obtained artifacts for each reconstruction
method.

Comparing the images we draw the following conclu-
sions:

1. The 3-PI-Method yields the best images. Circular fil-
tered back-projection proves to perform better than ASSR
and 1-PI. The latter two yield images of comparable qual-
ity. In order to put these observations on a more stable
ground we computed the root-mean-squared (RMS) of the
hounsfield values in the central parts, i.e. the water cylin-
der, in Figs.1-4. The corresponding numbers for those
slices which contain the worst artifacts are 3.82, 6.84, 10.3
and 12.8 for 3-PI, circular, ASSR and 1-PI, resp.

2. For each considered reconstruction algorithm we can
define a relation between the first projection which con-
tributes to one particular reconstruction plane and the po-
sition of the moving object. As it turns out the severity of
the artifacts strongly depends on this position. This holds
true for each algorithm considered.

3. Movement artifacts can have different shapes. In the
best case they are hardly visible at all. In the worst case
they can result in the non-visibility of small details or in
curved streaks in the reconstructed images.

4. As mentioned above the phantoms are exaggerated con-
cerning the movements’ frequencies and amplitudes. As
an additional result we observed that smaller frequencies
and/or amplitudes tend to decrease the movement artifacts
only slightly.

In order to understand why the artifacts are differently
distinct we have to remember the algorithms’ details. For
ASSR and the 1-PI-Method projection data taken over an
angular range of 180 degrees are back-projected. For circu-



lar filtered back-projection the angular range corresponds
to 360 degrees and for the 3-PI-Method it corresponds to
540 degrees. We therefore conclude than a larger angular
range provides the possibility than inconsistencies due to
movement get averaged out.

In summary we observe that the shape of the arti-
facts varies significantly with the used reconstruction al-
gorithms and the strength of the artifacts depends also on
the method used. Before the decision if a particular al-
gorithm is suitable for clinical scanning can be taken, the
comparison with well-known protocols is necessary. For
this study we used circular scanning as gold standard. The
considered helical algorithms result in artifacts which are
comparable to those of this gold standard. While the 3-PI-
Method seems to be even less sensitive to movement, ASSR
and the 1-PI-Method yield only slightly worse images than
circular filtered back-projection.
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Fig. 1. The head phantom scanned in single-slice circular mode.
Level: 0 HU, Window: 1000 HU.

Fig. 2. Head phantom: 1-PI-Method.

Fig. 3. Same as Fig.2 but for the ASSR method.

Fig. 4. Same as Fig.2 but for the 3-PI-Method.




Fig. 5. Simulation of colon movement. Circular scanning, Level: Fie. 7. Same as Fie.5 but for the ASSR M
.7 . thod.
0 HU, Window: 1000 HU. & " - i lor e e

Fig. 6. Same as Fig.5 but for the 1-PI-Method. Fig. 8. Same as Fig.5 but for the 3-PI-Method.



Longitudinal sampling and aliasing properties in
multi-slice helical computed tomography

Patrick J. La Riviére and Xiaochuan Pan

Abstract— In this work, we investigate longitudinal sam-
pling and aliasing effects in multi-slice helical CT. We
demonstrate that longitudinal aliasing can be a significant,
complicated, and potentially detrimental effect in multi-slice
helical CT reconstructions. Multi-slice helical CT scans are
generally undersampled longitudinally for all pitches of clin-
ical interest, and the resulting aliasing effects are spatially
variant. As in the single-slice case, aliasing is shown to be
negligible at the isocenter for circularly symmetric objects
due to a fortuitous aliasing cancellation phenomenon. How-
ever, away from the isocenter, aliasing effects can be signif-
icant, spatially variant, and highly pitch-dependent. This
implies that measures more sophisticated than isocenter
slice sensitivity profiles are needed to characterize longitudi-
nal properties of multi-slice helical CT systems adequately.
Such measures are particularly important in assessing the
question of whether there are preferred pitches in helical
CT. Previous analyses have generally focused only on isocen-
ter sampling patterns, and our more global analysis leads to
somewhat different conclusions than have been reached be-
fore, suggesting that pitches 3, 4, 5, and 6 are favorable, and
that half-integer pitches are somewhat suboptimal.

I. INTRODUCTION

With the advent of helical systems and particularly with
the advent of the multi-slice helical systems, computed
tomography (CT) has become a truly volumetric imag-
ing modality. Image acquisition now involves complicated
three-dimensional sampling patterns, and volumetric vi-
sualization and analysis techniques have become essential
tools for viewing and analyzing the huge amount of recon-
structed data produced by each scan.

This move toward volumetric CT imaging brings with it
a need for a more complete understanding of the modal-
ity’s three-dimensional image quality properties. In-plane
sampling and resolution properties have been extensively
studied in the context of step-and-shoot CT, and most of
those properties carry over directly to the helical case. In
the longitudinal direction, however, several novel effects of
the single-slice helical scan have been identified and stud-
ied by Yen et al [1,2]. They showed both analytically and
experimentally that single-slice helical CT scans are gener-
ally undersampled longitudinally by a factor of at least 2,
and that the resulting aliasing effects are highly spatially
variant across the field of view due to the peculiarities of
the longitudinal sampling engendered by the helical scan.
These spatially variant aliasing effects can alter object ap-
pearance and contrast across the field view, can make it
difficult to set display windows properly, and can gener-
ally degrade image quality. Not surprisingly, in single-slice
helical CT, the severity of aliasing effects increases mono-
tonically with the helical pitch.

The authors are with the Department of Radiology, The University
of Chicago, Chi cago IL 60637 USA.

In this work, we investigate longitudinal sampling and
aliasing effects in multi-slice helical CT. While the heli-
cal scan is expected to have a similar influence on alias-
ing as in the single-slice case, the longitudinal interlacing
of the multiple detector rows produces very complicated
sampling patterns whose effect on aliasing requires care-
ful study. In particular, we expect the severity of aliasing
effects (and the transmission of principal frequencies) to
vary in complicated, non-monotonic ways as a function of
helical pitch. Indeed, we hope to use this study to shed
further light on the question of whether there are certain
pitches—“preferred pitches”—in multi-slice helical CT that
lead to inherently more favorable sampling patterns than
do others.

This question has been addressed in many ways and of-
ten with a different answer. Hu [3] has argued that pitches
3 and 6 are preferred because the bands of projection-ray
dependent complementary samples (discussed below) are
centered between the direct samples and thus produce av-
erage sampling intervals equivalent to those in single-slice
helical CT operating at pitches 1 and 2, respectively. Wang
and Vannier [4] performed a “sensitivity analysis” of cen-
tral detector channel sampling patterns in multi-slice he-
lical CT and reached a nearly opposite conclusion, argu-
ing that pitch 6 is distinctly suboptimal relative to other
nearby pitches and that a pitch slightly less than 3 is to be
preferred to pitch 3 itself. Both of these sampling analyses
are limited in their scope, however, in that they only truly
apply to the longitudinal sampling for the central detector
channel (v = 0), and thus really only predict performance
at the system isocenter. Given the extreme variation in lon-
gitudinal sampling patterns between central and peripheral
detector channels and the spatially variant nature of alias-
ing effects, we felt it important to develop a more global
analysis accounting for the entirety of the longitudinal sam-
pling that arises at each pitch.

II. METHODS
A. Theoretical analysis of sampling and aliasing

We begin with a theoretical analysis of longitudinal sam-
pling and aliasing effects in reconstructed multi-slice helical
CT volumes. To facilitate comparison with the analysis of
single-slice helical CT sampling and aliasing, we adopt and,
where necessary, extend the notation of Yen et al. [1].

In N-slice helical CT under the multiple parallel fan-
beam approximation, we can regard the measured data as
samples of a 3D fanbeam sinogram pg(7, z), where § is the
projection angle, v is the angle between the projection ray
in question and the central ray of the fanbeam, and z is



the longitudinal position along the object being imaged.
In practice, the imaging is performed with detectors of fi-
nite longitudinal extent; thus the function being sampled is
more appropriately modeled as the convolution of the ideal
sinogram and the detector’s longitudinal response function,
which we denote a(z) (in this work we ignore blurring and
sampling effects in the v coordinate in order to focus on
longitudinal effects). Thus we denote by

ps(7,2) a(z)

the 3D function whose samples we acquire. Often a(z) is
modeled as an ideal rectangular function of width D, where
D is the longitudinal detector collimation at the isocenter.
At each of M projection angles f; = (2wi/M), i =
0,...,M — 1, and at each value of ~, the data acquired
by the mth detector row in an R-revolution scan at helical
pitch P, comprises samples in z that can be written as

= pﬁ(’Y:Z) *

R—

=P, (7,2 Z [ (i+kd31+mp)]
i M

where ds; = PpD. The delta function contains three terms
of interest. The first term, z‘ﬁ‘,}, reflects the overall longi-
tudinal offset of the sequence at each projection angle; this
arises due to the helical nature of the scan. The second
term, kds1, is the actual sampling step, as k is the sum-
mation index and d; is the longitudinal interval between
samples at (8;,7v) and (8; + 2m,7). The third term, mD,
reflects the overall longitudinal offset of the sequence for
the mth detector.

Given these sequences of longitudinal samples at each 3;
and « for each detector row, it is common practice to inter-
polate a complete sinogram p(ﬁ'int) (v, 2) at a fixed value of z
so that reconstruction can proceed by use of conventional
fanbeam reconstruction algorithms. In addition to making
use of the direct samples of Eq. 1 for interpolation, it is gen-
erally advantageous to exploit the redundancy of fanbeam
data acquired over 27 to augment these samples with the

complementary samples sgﬂzw +2,Y(—fy,z) that correspond
(m)(
v

geometrically to the same projection ray as s, ,2), only
shifted longitudinally by (Z322) d,;. The most straightfor-
ward interpolation approach, 180MLI, makes use of linear
interpolation among these direct and complementary sam-
ples, and it can be expressed as

56 (v,2)

N—
5 (v,2) =

m=0

S P Co) B N CRICP] I )

._a

[ (m) ) %2 h( )(% 2)

where *, denotes a 1D convolution in the variable z, and
h((im) (v,2) and h{™ (v, z) are the linear interpolation ker-
nels applied to the direct and complementary samples, re-
spectively, of the mth detector row. In the z variable, these
kernels have the form of an asymmetric triangle function.

The half-widths of these asymmetric triangles can be com-
puted empirically from the sampling patterns that arise
when the direct and complementary samples for all rows
are interlaced appropriately at each +.

Given a stationary fanbeam sinogram pg?t) (v, 2), the
penultimate step of the reconstruction process is to filter it
in the vy direction,

45,(1,2) = [Docos(Mpl (1,2)] %, 900, (3)
where Dg is the fanbeam focal length, and g(v) is the
fanbeam reconstruction filter. Reconstruction of an im-
age f(r,®,z), expressed here in polar coordinates, is then
achieved by use of

M-1 1
f(ri9,2) =~ Ap ; W(Iﬂi (Y, 2), (4)

where L(r, ¢, 3;) and 4" are known functions of r, ¢, and
B; defined in [1,5].

Equation 4 can be viewed as an expression for a con-
tinuous 3D volume f(r, ¢, z) reconstructed from the mea-

sured, sampled data s(m)(% z). We are interested in the
effect that the longltudmal sampling during the measure-
ment process has on the longitudinal properties of the re-
constructed volume. Thus we regard f(r, @, z), for fixed
(r,¢) as a continuous 1D function of z, which we denote
fr,$)(2), and will examine the spectrum of the resulting
profiles. In practice, of course, we do not reconstruct vol-
umes that are continuous in the z coordinate, but rather
that comprise a finite set of slices spaced by a reconstruc-
tion interval dso. However, because we are interested in the
effect of the acquisition sampling, we can safely disregard
this resampling step.

Computing the Fourier transform with respect to z of
Eq. 2, as in [1], yields

M—-1
Fe{firo)} = AﬁDoRg{ g o)

x Z P, (% fa= T) e P2 H (v, fz)] %y g(v)}

k=—o00

7

where

N-1

> e [ HM (0. 1)

m=0

b B, g ],

Hllc (’Y: fz) =
(6)

and where H{™ (v, f.), H(™ (3, f.), and Py,(y,f.) are
the Fourier transforms with respect to z of h((im) (v, 2) and
R™ (7,2), and pj, (v, 2), respectively.

Equation 5 allows us to draw some conclusions about po-

tential aliasing effects. It can be argued that the helical CT
data is at least approximately bandlimited longitudinally



by the first zero of the rectangular detector response func-
tion, which occurs at f, = 1/D [1]. Satisfying the Nyquist
sampling condition would thus require a sampling interval
ds1 = D/2. From Eq. 5, it can be seen that the fundamen-
tal sampling interval, which determines the spacing of the
spectral replications Péi (’7, I = %) is ds1 = PpD, and
thus the Nyquist condition is not satisfied for reasonable
values of P,. In general, then, we might expect substantial
aliasing effects characteristic of sampling at interval P, D.
However, the phase factors in Eqgs. 5 and 6 can lead to
partial or complete cancellation of aliasing in some circum-
stances.

The first such case arises when the helical pitch Py is an
integer less than or equal to the number of detector rows N.
In this case, the H(™) (v, £.) are all of the form w,, H (7, f.),
where the w,, are normalization weights chosen so that
the w,, for detector rows that follow the same trajectories
sum to 1. Given this, it is possible to show that the only
remaining m dependence in Eq. 6 is contained in a term
of the form:

Pn—1
Z e IPTREL = Ph,
0,

m=0

fork = 0, :tPh, :t2Ph, RPN
otherwise

In this case, it is possible to replace all the k in Eq. 5
by Ppk, and thus the effective sampling interval becomes
ds1/Pr, = D. This interval still does not satisfy the Nyquist
condition, but the nature and severity of the aliasing effects
will be substantially altered relative to the general, non-
integer pitch case.

The second situation in which we might expect outright
aliasing cancellation is at the system isocenter when imag-
ing circularly symmetric objects, a phenomenon demon-
strated by Yen et al. for single-slice helical CT. In this
situation, it is possible to manipulate Eq. 5 to isolate a
factor of the form

M—1
Z e—j2m’§ — M,
; 0,
=0

and thus the effective isocenter sampling interval becomes
ds1 /M, a reduction by the number of projection angles per
revolution!

fork =0,£M,+2M,...
otherwise,

(7)

B. Numerical evaluation of analytic results
B.1 Spatial distribution of aliasing effects

In order to study the spatial distribution of aliasing ef-
fects, we evaluated Eq. 5 for a circularly symmetric, cylin-
drical object with radius R, and with sinusoidal longitudi-
nal variation of frequency fy. That is, we assumed

p(7,2) = py(7) cos(2m fo2),

where

py(7) = { VR —D§ sin®(7),
0,

v < sinfl(Rc/Dg)
v > sin"'(R./Do)

Thus

Pato £ =m0 {500 = fo) 4804+ o] |

This object is similar to the cylindrical, square-wave phan-
tom employed by Yen et al. [1], and it allows us to isolate
and quantify aliasing effects easily. An ideal reconstruc-
tion would have energy only at the frequencies f, = % fo.
However, due to aliasing effects we actually expect energy
at f, = tfo + disl’ for k € Z. For one such frequency
of interest f, we evaluate the factor in square brackets in
Eq. 5 by computing the sum over the appropriate values
of k (in most cases, only one k contributes to each f, of
interest). We evaluate H("™ (v, f.) by computing the asym-
metric triangles h(™ (v, z) on a discrete (v, z) grid, heav-
ily zero-padding in z, and then taking a discrete Fourier
transform to obtain estimates of H(™) (v, f.) on a discrete
(7, f2) grid. The quantity in square brackets can be ex-
pressed as a 2D, complex-valued array having dimensions
of a sinogram, and thus F; {f(, ) (z)} can be computed
on a Cartesian grid simply by applying a fanbeam filtered
backprojection routine to the real and imaginary compo-
nents of this sinogram-like quantity. The magnitude of the
resulting complex-valued image gives the magnitude of the
longitudinal spectrum at frequency f, at each transverse
point in the reconstructed volume.

We evaluated such images for a 4-row system at a num-
ber of pitches, using a cylindrical phantom of radius 230
mm and fundamental frequency fo = 1/3.175 mm~!. We
modeled the detector response as rectangular, with lon-
gitudinal collimation 2.5 mm at the isocenter. We used
128 projection angles and 128 equiangular projection rays,
spaced by 4 mm at the isocenter, and a focal length of 540
mm. Typical results are given in Sec. III-A.

B.2 Contrast to aliased noise as a function of pitch

In addition to examining the spatial distribution of alias-
ing effects, we also sought to quantify the severity of alias-
ing effects as a function of helical pitch, in an effort to
shed some light on the issue of whether there are preferred
pitches in multi-slice helical CT. To do so, we adopted the
point of view of Park et al. [6], in which aliasing is re-
garded as structured, signal-dependent noise that can in-
terfere with the detection of a signal. We then computed a
contrast-to-aliased-noise ratio (CN,R) for reconstructions
of the object discussed in Sec. II-B, using the geometry
discussed there, for pitches ranging from 1.0 to 8.0 in incre-
ments of 0.1. Yen et al. also used a CN, R figure of merit in
their consideration of single-slice helical CT [2]. However,
in that case, the main frequency produces only a single
low-frequency aliased peak of interest, and so they define
CN,R for a single longitudinal profile simply in terms of
the amplitudes of the reconstructed main and aliased spec-
tral peaks. In the multi-slice case, there will, in general,
be numerous aliased peaks at low frequencies. We are also
interested in a more global measure of aliasing content in



an entire reconstructed volume. Thus we define

Vi S5 Fa, @i fo)l?
VE s S0 55 Fe, (@is, £

where Fp, (z;,y;f;) is the spectral magnitude image for
frequency f, on a Cartesian grid. The i and j sums run over
pixels less of distance less than R, from the image center
and the f, sum runs over aliased frequencies between 0 and
2/D. Note that CN,R is expressed in decibels.

ITI. RESuULTS
A. Spatial variance of aliasing effects

Figure 1 depicts the magnitude |Fp, (z;,y;, f;)| for i =

0.020

0.015
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Spectral magnitude
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Fig. 1. Spatial dependence of longitudinal spectral magnitude for
three frequencies of interest along a line from the isocenter to the
edge of the phantom.

64,...127, 7 = 64, and three values of f,: f. = fo,
fo = fa1 = (—fo + %)a and f, = fa2 = (fO + %) These
are the only three values of f, € [0, %) for which the spec-
tral magnitude is non-negligible. This fact alone confirms
the finding in Sec. II-A that the effective sampling interval
is D and not D Py, for integer pitches less than or equal .
Otherwise, we would have expected to find non-negligible
spectral magnitude at, for instance, f, = (— fo+ 3%) The
figure itself confirms the spatially variant nature of the
aliasing effects, which increase in magnitude from zero at
the isocenter to a maximum near the periphery of the phan-
tom.

B. Contrast to aliased noise as a function of pitch

Figure 2 plots the calculated C'N, R versus helical pitch;
higher values of C N, R are better. As expected, the curve

40;‘
3o§
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m‘ﬁ ;
zZ L
Z 10
100 ‘ ‘
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Fig. 2. CNgR, in decibels, versus helical pitch for a four-slice scanner
with longitudinal collimation width 2.5 mm at the isocenter imag-
ing an object with sinusoidal longitudinal variation of frequency
fo =1/3.175 mm~1!. Higher values of C N, R are better.

is far from monotonic. Local maxima are evident around
pitches 3, 4, 5, and 6. Some complicated variation is ev-
ident between pitches 1 and 2, with pitch 2 being a clear
minimum in the curve. Other minima occur at half-integer
pitches.

An intuitive explanation of these results can be ob-
tained by considering the longitudinal sampling patterns
that arise at various pitches and at various values of . For
example, at pitch 3, the direct samples of the four detector
rows interlace to form a uniform sampling pattern with in-
terval D. At v = 0, the complementary data reside midway
between these direct samples, and thus provides effective
sampling interval of D /2, which allows relatively narrow
interpolation kernels to be applied. At larger values of 7,
the complementary data approaches but do not, in gen-
eral, cross over the direct samples, and thus do continue to
provide some measure of stable aliasing suppression.

Perhaps the most surprising aspect of Fig. 2 is the peak
at pitch 4, which is generally considered a poor choice be-
cause of its unfavorable isocenter SSP performance. As at
pitch 3, the direct samples of the four detector rows inter-
lace to form a uniform sampling pattern with interval D.
However, now at v = 0, the complementary data are coin-
cident with these direct samples, and relatively broad in-
terpolation kernels must be applied; this explains the poor
isocenter SSP performance. However, for larger values of v,
which contribute most to areas of the reconstructed volume
where aliasing is likely to be problematic, the complemen-
tary data reside nearly midway between the direct samples
and thus provide a measure of aliasing suppression where
it is needed most.



IV. DISCUSSION AND CONCLUSIONS

We have demonstrated that longitudinal aliasing can be
a significant, complicated, and potentially detrimental ef-
fect in multi-slice helical CT reconstructions. Multi-slice
helical CT scans are generally undersampled for all pitches
of clinical interest, and the resulting aliasing effects are
spatially variant.

As in the single-slice case, aliasing is negligible at the
isocenter for circularly symmetric objects due to a fortu-
itous aliasing cancellation phenomenon. The effective over-
sampling at the isocenter of such objects explains why it is
even possible to obtain reasonable looking slice sensitivity
profiles (SSP) and longitudinal modulation transfer func-
tions of an ostensibly undersampled system: these mea-
surements are always performed at the isocenter by use of a
circularly symmetric phantom. However, this phenomenon
in no way licenses the use of these measures to characterize
longitudinal resolution properties of multi-slice helical CT
systems. Away from the isocenter, aliasing effects can be
significant, spatially variant, and highly pitch dependent.
More sophisticated measures of longitudinal properties are
needed to characterize multi-slice helical CT systems ade-
quately.

Such measures are particularly important in assessing
the question of whether there are preferred pitches in he-
lical CT. Previous analyses have generally focused only
on isocenter sampling patterns, and thus predict isocenter
SSP performance, but neglect aliasing effects away from
the isocenter. Our more global analysis suggests that the
much maligned pitch 4, despite its poor isocenter SSP per-
formance, actually yields a very favorable global CN,R
because of favorably uniform longitudinal sampling for its
outer detector channels. The analysis did confirm the ad-
vantages of pitches 3 and 6, and also suggested that pitch
5 would be favorable. Half-integer pitches appeared to be
poor performers by this measure.

The analysis performed above implicitly blends sampling
and interpolation effects. In this work, we examined the
use of straightforward linear interpolation. In practice,
straightforward linear interpolation is rarely used because
frequent “changeovers” in the pairs of detector rows con-
tributing to a given slice tend to produce artifacts in recon-
structed images. In general, either attention is restricted
to pitches where linear or quasi-linear approaches can be
applied safely [3] or broader, adaptive z-filtering interpola-
tion approaches are employed [7,8]. We do not expect that
the use of a different interpolation approach would funda-
mentally alter the conclusions of this study. The presence
of longitudinal aliasing effects and their spatial distribu-
tion are effectively inherent properties of the helical scan
geometry. Altering the interpolation approach might alter
the transmission of principal, unaliased frequencies some-
what, but would not be expected to affect aliasing effects
profoundly. Nonetheless, we do intend to extend our anal-
ysis to these alternative approaches, as their longitudinal
properties have only been characterized through use of SSP
measurements, whose limitations should be evident from
the preceding discussions.

One effect that was not considered in great detail in this
summary is the small cone angle that arises in multi-slice
helical CT. This cone angle has generally been ignored in
deriving reconstruction algorithms and sampling analyses
by making the multiple parallel fanbeam assumption made
here, i.e. by assuming that the multi-row data comprises
multiple, parallel transverse projections of the object, not
multiple, differently oblique ones. This approximation is
regarded as reasonably sound for systems of 4 or fewer
rows, although we have shown elsewhere that the small
cone beam angle does influence longitudinal sampling and
aliasing properties by introducing inconsistencies among
the data measured by the different detector rows [9]. We
felt justified in ignoring the effect in the present summary
because we felt that we could contribute a novel, thorough
analysis of sampling in multi-slice helical CT under the ap-
proximation that has been the foundation of all previous
analyses. The development of a more complete analysis
that does account for the cone angle effect is the subject of
ongoing work.
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ABSTRACT

Images from dual detector positron emission
mammography (PEM) systems are commonly reconstructed
by backprojection methods of classical tomography.
Characteristics of 3—-D PEM images were investigated using
analytic models and computer simulations, in particular depth
resolution and the quality of images in the third dimension
normal to the detectors. These modeling tools provide insight
into the depth blurring observed in 3-D images from
experimental line source and breast phantom studies acquired
with detectors built using pixellated arrays of LGSO crystals..

Approaches to improved 3-D breast imaging are discussed. Figure 1. Diagram of the geometry of the point source
between the two PEM detectors.
I. INTRODUCTION

Positron emission mammography (PEM) with F-1gletection of an annihilation photon and that photons are
fluorodeoxyglucose (FDG) has the capability to image regiof§tected at the front surface of the detectors.
of increased metabolic activity in the breast, which may prove Now suppose that a point source of activity(positron
useful in the detection, staging and treatment of breast caneghissions/sec) is located at position P that is a distarficen
Several groups, including our own, have built or argne of the detector heads. The photon flux density from
developing dedicated PEM imaging systems. System desigiifihilation photons (counts/sec/unit area) on the surface of
include parallel planar detectors [1-3], curved plate detectafft detector is
[4] and small ring configurations [5, 6]. Clinical breast _ 2 _ 2, .2\32
imaging with FDG is an area of active research [7-9]. f(n=AN2m)cosd= A 2mL /L= +r7)= %) (1)

wherer is the distance from the orthogonal projection of point

With dual detector PEM the breast is imaged between t
. L onto the detector surface afids the angle from normal
static parallel planar detectors. There is incomplete angular. X .
idence. Equation (1) can be integrated for the photon flux

sampling in planes perpendicular to the detectors. Ima hin an accentance an from normal incidence
reconstruction is commonly performed in planes parallel to t P 98nax '

detectors using the backprojection method of classical F(@max) = AQ—cos8 max) (2)
tomography [10]. In a simulation study 2-D iterative ) )

reconstruction in perpendicular planes was implemented affla?e total flux will be the same on the opposing detector.
single slice rebinning [5]. For both methods there is blurring The geometric efficiency for detection of annihilation
between the detectors due to incomplete angular sampling. events is 1-cosfpax and the total sensitivity is

The goal of this work is to provide a better understanding2 (L-cosBmax )- Use of a larger acceptance angle in image
of some aspects of classical tomography reconstructiggiconstruction will increase sensitivity, which should decrease
performance for 3-D PEM image formation. In particulargtatistical noise in the resulting images and enable better
depth resolution and the quality of images normal to thfstection of smaller and lower contrast tumors. Increasing the

detectors will be investigated. Analytic and computegcceptance angle will degrade image uniformity, however [3].
modeling will be used and results from physical experlmenés

will be presented. . Depth Resolution for an Ideal Detector and Circular Pixels
II. ANALYTIC MODEL Reconstructed imggefs are formed in plangs parallel to the
) ) ] detectors by backprojecting counts along the lines of response
In this section a model of the angle-dependent point sourggnnecting the detection locations of the annihilation photons.
sensitivity will be used to estimate the intensity of a poinfhe resulting images are the sum of a focused image of
source in different reconstructed image planes. These valy@givity in the desired plane and blurred images of activity in
A. Point Source Sensitivity can be derived for the case of an ideal detector with infinitely

. . small pixels and backprojection into circular image pixels.
Consider a simple PEM detector model where the two P prol gep

planar detector heads are parallel and separated by a distanc#! the image plane containing the point source, all events
D (Figure 1). Assume that each detector has an efficisfimy ~Within the axial acceptance angle will contribute to the pixel
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Figure 2. Diagram of circular pixels of radi&sin different

. Figure 3. Point spread functions normal to the detector for
image planes.

different maximum acceptance anglé, ;) of coincidence

containing the source point (Figure 2). Now consider a circul@¥ents (equation (4)). An ideal detector is modeled and the
pixel of radiusR that is located a distana@efrom the point circular image pixels are 3.4 mm in diameter.

source along a line perpendicular to the detector face. The
maximum angle from the normal of annihilation photons
originating at pointP that pass through this circle is 100
0, = arctanR /z) If the maximum acceptance angle for image F
reconstruction isfyax. then the photon flux from point P

contributing to reconstructed counts in this pixel is I \

F(62) = A (L= cos(min{f.6max ) 3) —

The normalized point spread function (PSF) perpendicular to I
the detector follows from equations (2) and (3) as 1 r r r
PSH(2 = (L—cos(minf8z Omax})) /(1 —c0sOmax) 0 > 10 s 20

(4) Max. Acceptance Angle (degrees)

; 22U

=min{(1-1[ 1+ R/ /( 1-cos@ , . . .

« [1+(R37 % ( max): 3 Figure 4. Full-width at half-maximum of the PSFs normal to

A measure of the imaging resolution perpendicular to thhe detector as a function of the maximum acceptance angle of
detector face is given by the full-width at half-maximuntoincidence events contributing to the backprojection images
(FWHM) of the PSF. From equation (4) this is (equation (5)). An ideal detector is modeled and the circular

> image pixels are 3.4 mm in diameter.
FWHM (8may) = R+ COS0 may) /L~ (L/4)(1+ cosB maxf ¥
5) acceptance angle increases because the point sources are

increasingly blurred in non-focal planes (Figure 4).
For the discrete case where the image of a point source is

reconstructed into square pixels that are the same size as the
detector pixels, the image counts are usually spread among a
few pixels in the focal plane. The maximum pixel value is A. Point Source

factor B < 1 times the total image counts and is dependent on Point source acquisitions were simulated for a PEM system

the location of the point source with respect to thgi pixellated detectors. The computer program for these
discretization grid. For this more general case an expressigp jlations employed ray-tracing and numerical integration
for the PSF normal to the detectors has not yet been derivediqgs. photons were assumed to be detected at the surface
however we have found empirically that the FWHM of small¢ 1o getectors. The detector heads were modeled as 29 x 29
point sources often can be modeled by arrays of 3.3 mm pixels, the same geometry as PEM detectors
FWHM O@max) =2 RI1-(B/ 2(1-coSO max)l/ we have built [3]. The detector separation was 18 cm.
Image reconstruction was by classical tomography with a
115 3( 1—cos€max)]2}jj2 pixel size of 3.3 mm and image plane spacing of 3.3 mm.
which reduces to equation (5) whgnl. Images were reconstructed with acceptance angles of 5, 10, 15
d 20 degrees. Depth resolution improves with increasing

A,S ar.1 example, conil%der the case of circular pixels 3'§§ceptance angle, though there is considerable blurring in the
mm in diameter (area 9 nfin The dependence of the PSFs 0fy, 3965 (Figure 5) and in vertical profiles through the point

maximum acceptance angle is shown in Figure 3. Th@yrces (Figure 6). The FWHM of the profiles are 10.6, 5.2,
resolution normal to the detectors improves when thgg and 2.7 cm for 5, 10, 15 and 20 degree acceptance angles,

FWHM of PSFs for Ideal Detector
and Circular Image Pixels

FWHM (cm)
-
o

[ll. NUMERICAL SIMULATIONS AND PHYSICAL
EXPERIMENTS



respectively. The widths predicted by equation (6) vatkr
0.29 are 11.2, 5.6, 3.7 and 2.8 cm, respectively.

B. Line Source

Coincidence data were acquired with a PEM system built
with a pixellated detector array of LGSO crystals (Hitachi,
Inc.). Each detector head was 10 cm x 10 cm with a 29 x 29
crystal array; the individual crystals were 3 mm x 3 mm x 10
mm and the crystal pitch was 3.3 mm. The crystals were
coupled to an array of 4 x 4 Hamamatsu R7600-00-C8
position sensitive photomultiplier tubes. The rest of the
detector design has been described elsewhere [3].

Three line sources were filled with F-18 and placed
midway between the detector heads, which were separated by
18 cm. Images were reconstructed in the central 21 slices with

A B
a spacing of 3.3 mm using 10 and 20 degree acceptance II

angles. Blurring normal to thg detectors is more Severe f9r t'afﬁure 5. Images normal to the detector face of reconstructions
smaller acceptance angle (Figure 7). Depth resolution d|ffe6§ a point source for (a) 10 degree and (b) 20 degree

for the line sources because of the more limited angular range eptance angles. The detectors would be positioned at the
of lines of response near the edge of the detector. top and bottom of each image

C. Breast Phantom with Tumors

A 6 cm thick box phantom simulating a compressed brea Profiles Normal to Detector
was filled with 33 nCi/cc F-18 and imaged for 10 min with the 1.0
previously described PEM system. The distance between t 0.9
detector heads was 7.5 cm. Simulated tumors 12 mm, 10 m & 0.8 /RN
8 mm and 4 mm diameter were filled with activity in a 10:1 2 0.7 AN/ R\
tumor:background activity concentration ratio. Images wer, £ o.6 /TN ——5deg
reconstructed for 21 slices with a 3.3 mm spacing using| < o.s L] W —10deg
coincidence acceptance angle of 20 degrees. The three lan € 0.4 L] WA :;2 323
tumors are visible in their focal plane, but there is appreciab Té 0.3 //// \\\\\
blurring normal to the detectors (Figure 8). E 0.2 7/ N

IV. DISCUSSION gé " ~— |

The analyses and simulations of this paper were simp 0 3 6 9 12 15 18
ones and they represent an initial effort toward quantifyin Distance (cm)
depth-dependent blurring for PEM. This is an important issuc

since classical tomography is widely used for dual detectplgure 6. Profiles normal to the detectors for a point source
PEM image reconstruction. Depth-dependent blurring as welnulation and image reconstruction with different acceptance
as sensitivity, image uniformity and image noise are alingles. The images corresponding to the 10 and 20 degree
affected by the maximum acceptance angle chosen f@irves are shown in Figure 5.

reconstruction.

The analytic expression for the PSF normal to the detect%lrane’ not removed as for computed tomography. It would be

could be improved by generalizing it to model discretizatiog'tfggildn%rt?ogﬁ Setégggettghiitréle;;;\évaf?gr:gSE;eE'0?:1;36123boer
of the detectors and of the backprojected images. T grapny 9

computer simulations of the PEM system could be made m Pe“mlted angle computed tqmography images reconstructed
rom the same dataset, particularly for compressed breasts. A

rea!|st|c by better modeling photon interactions in the sour ?oader question is whether there are better methods for

region and detector. . X . . ;
extracting 3-D information from coincidence data acquired

Image reconstruction by classical tomography hagith dual detector PEM.

advantages and disadvantages for dual detector PEM. OneA more aeneral challenae for PEM is the optimization of

advantage is high sensitivity since all of the coincidence da atector de%i n (e Iangr detectors curvedpdetectors fin

within a given acceptance angle can be used in ima 8tectors) d%tectc.)%. r?mtion (static f,ew or man dete’ctorg

reconstruction, reducing statistical noise. It is fast enough th X ' ' y

image reconstruction can be implemented in real-time as p o%nscl)tl?ar\lsr)l' é?n?gStec;Eig%r:)StrgChtlo?teri:tﬁ/t:?gcorggltif;;gg)l
of data acquisition [2]. grapny, p grapny, ,

breast positioning (uncompressed vs. compressed) and other

The major disadvantage of classical tomography is thiictors for the desired detection or quantitation task.
activity from neighboring planes is blurred into the image



A (10 degree acceptance angle)

B (20 degree acceptance angle)

Figure 7. Images of line sources from an experimental acquisition for (a) 10 degree and (b) 20 degree acceptance angles. (le
Focal plane image parallel to the detectors, (center) image normal to the detectors and (right) vertical profile throuigh the ce
line source of the image normal to the detectors. Only the center 21 slices spaced at 3.3 mm were reconstructed.

A B C D
Figure 8. Images of a compressed breast phantom with simulated tumors from an experimental acquisition. Image reconstructic
was with a 20 degree acceptance angle. (a) Focal plane image parallel to the detectors, (b) image normal to the degéctors throu

the upper two tumors of (a), (c) image normal to the detectors through the tumors on the right side of (a), (d) verécal profil
through the left tumor of (b), (e) vertical profile through the right tumor of (b).
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Abstract

This paper investigates a novel approach of reconstructing
the principal directions of a diffusion tensor field directly from
magnetic resonance imaging (MRI) data using a tensor
tomography data acquisition approach. Because tensor
eigenvalues are assumed to be known, the reconstruction of
principal directions requires less measurements than the
reconstruction of the full tensor field. The tensor tomography
data acquisition method (rotated diffusion gradients) leads to a
unique reconstruction of principal directions while the
conventional MRI acquisition technique (stationary diffusion
gradients) leads to an ambiguous reconstruction of principal
directions if the same number of measurements are used. A
computer generated phantom was used to simulate the diffusion
tensor field in the mid-ventricular region of the myocardium.
The diffusion model in this study depends upon the fiber
structure of the myocardium. An iterative algorithm was used in
the reconstruction. Computer simulations verify that the
proposed method provides accurate reconstructions of the
principal directions of a diffusion tensor field.

1. INTRODUCTION

Magnetic resonance imaging (MRI) has been shown to be
effective for imaging diffusion tensor fields through a process
known as diffusion-weighted imaging (DWI). In some imaging
applications such as cardiac imaging, the primary objective 1is
to use DWI to determine the principal directions of the diffusion
tensor field where a complete understanding of the tensor field
itself is of secondary interest. It has been established for isolated
perfused myocardium that water diffusion anisotropy measured
by MRI faithfully parallels histologic anisotropy. In a cardiac
study the knowledge of the principal directions of the tensor
field provides myocardial fiber organization [1]. Myocardial
fiber architecture is a key determinant of the electrical and
mechanical properties of the myocardium. On the other hand,
the eigenvalues of the diffusion tensor in cardiac tissue may be
assumed to be known. These values are similar to diffusivities
reported in other human tissues, which are less than half the

diffusivity of water at 37° [1].

This paper is concentrated on two tasks. The first is
presentation of a novel approach of reconstruction of principal
directions directly from diffusion-weighted MRI data, assuming
known eigenvalues. Because a priori information is
incorporated, the reconstruction of principal directions requires
less measurements than in the case of the reconstruction of a full
tensor field. This can be an important asset, because some DWI
measurements strongly suffer from systematic errors such as
eddy current artifacts [2]. Reducing the number of
measurements may be beneficial when it is desired to use only
artifact-free measurements. The second goal of this paper is to
show that a MR tensor tomography diffusion-weighted imaging
(TTDWI) approach [4,5] is more effective for reconstructing
principal directions than the standard MR DWI techniques.

II. METHODS

A. DWI imaging: Tensor tomography versus the
conventional MRI technique.

One of the approaches used in DWI is projection
reconstruction (PR) imaging [3]. In PR imaging radial lines are
acquired in Fourier space instead of rectilinear lines as in 2D
Fourier transform imaging methods, for example, echo-planar
imaging (EPI). The PR signal during readout can be expressed as

s5(1) = fp(fc)e (D

where ér is the readout gradient, p is the spin density, y is the
gyromagnetic ratio, G is the amplitude of the diffusion
weighting gradient, @ is the direction of the applied diffusion
weighting gradient, A is the length of one lobe of the diffusion
pulse, D is the diffusion tensor, and A is the separation between
each start of the two gradient pulses.

LA 2.2, \T S\ a2
iyx-G,t 4G D(2)®)A(A-A/3) ,.
o (® D(X)D)A( )dx,

Taking the Fourier transform of s(#) , (1) can be rewritten
as

2 ATD RN N
oo 1) = fp()e® O PIe6naz . @
where g2 is a constant and 0 is the direction of the readout
gradient [4]. According to (2), the PR signal can be presented as
a “projection” p. ~(0,¢) [which is proportional to the Fourier
transform of S@(% in (1)] of the two functions p and D.

The transition from (1) to (2) is made by applying the well-
known Fourier section theorem. Our goal is to reconstruct a 3D
diffusion tensor field using fully 3D reconstruction [5].
However, in the following analysis we will restrict our attention
to slice-by-slice data acquisition, where the readout direction is
defined by the projection angle 6. The necessary information is
provided by data sets with different choices of @ . This vector
has a direction in 3D as shown in Figure 1.

The goal behind DWI is the reconstruction of D, assuming
that p is a known function. In practice, p is reconstructed using
(2) when g is set to zero. In the conventional MR DWTI technique
measurements are made with stationary diffusion gradients, i. e.
® is a constant vector. The same function is either projected at
every angle 0, as in the case of PR, or acquired line by line in
Fourier space, as in the case of EPI. The standard reconstruction
technique for PR DWI is the filtered backprojection (FBP)
method, for EPI it is the Fourier inversion formula. Exponential
terms of D are reconstructed and D is obtained by taking a
logarithm. Theref?re, conventional ~DWI  provides
reconstruction of ® D® for some set of fixed @. For 3D
symmetric tensor imaging it is necessary to use six different @
to obtain six different data sets. By appropriate choices of @,
conventional MR DWI reconstructs the diffusion tensor

components D, D, etc. from six data sets.
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Figure 1. The projection geometry
The tensor tomography DWI (TTDWI) approach is similar
to the PR technique but uses the rotating diffusion gradients
when ® is a function of 0. In order to reconstruct a 3D tensor

field, the six different @ should also be used and all data sets are

used simultaneously during the reconstruction process. Because
a different function is projected depending on the projection
angle, a special reconstruction technique is required [4, 5,6].

B. Parameterization and reconstruction of principal
directions when eigenvalues are known

1) 2D case

The main idea can easily be demonstrated in 2D case. The
2D tensor for each pixel can be represented in terms of known
eigenvalues and eigenvectors:

1,1 2.2 ..

Dij=lein+7»2Xin,kl>k2,z,J= 1,2 . 3)
The unknown eigenvectors can be parameterized by the angle
@, which ensures orthogonality and normalization:

®' = [cos® sin®]”, X* = [—sin®,cos®]”, 0 <D <. (4)
Note that @ and ®+m are equivalent, because the principal
eigenvectors are defined up to sign. Because the function ®(%)
is the unknown variable, one can expect that only a single set of

measurements of diffusion-weighted gradients is necessary to
reconstruct principal directions.

. . . T
Conventional DWI provides reconstruction of @ D®,
where ® = [cos¢,sin¢] at some fixed ¢. The expression
® D® can be rewritten:

&' DB = hycos(®—¢)” +A,sin(D— ). (5)
Equation (5) can be solved with respect to ®:

@, = ¢ + atan

D, = ¢ + atan| -

where integers ki, k, and k3 are chosen to ensure that
0=®,,®,<m. A single measurement of diffusion-weighted
gradients provides two different @ in general. Therefore, the
principal directions are not uniquely defined.

The source of this ambiguity can be seen from other points
of view. To define all eigenvalues and eigenvectors it is neces-

sary to know all components of a symmetrical tensor and stan-
dard MRI DWI provides reconstruction of them. Suppose we
know a priori A, A, and reconstruct, for example, D, (from

measurement when ¢=0). Can we then define D,, and D, ? It is
known that two invariants exist for 2D second order tensors:

D, +D,, = A+ M, @
2 2 2 2 2
Dy + Dy, +2D, =N + 1,
Given Ay, Ay, and D, it is clear that the sign of D, is not
defined.
The source of aglbiguity can also be presented graphically.
1 2
Because ((?)TX ) + ((?)TX ) =1, the
T

N
® Do = (}\I—K2)(€JTX ) +A, is the same for an equiva-

value of

NN . . Sl
lent ‘mTX ‘ . According to Figure 2(a) there are two X that

. (Tl .
provide the same ‘oo X ‘ in the general case.

We present here an empirical conjecture that the TTDWI
method removes this ambiguity. Our results show that the
TTDWI method derives a unique estimate of the direction of the
principal component in fewer measurements than are required
in conventional DWI. It can be shown that only one root in (6)
satisfies (5) simultaneously for all ¢. In the TTDWI method we
do not reconstruct @ D@ , because ¢ is not fixed, but instead
we reconstruct D. We can only fit @ to projection measure-
ments at the angles 8 corresponding to one ®($(6)) . However,
we should not have duality of @, because only one @ satisfies
(5) for all ¢. In the TTDWI method only projection measure-
ments over 0 corresponding to one @(¢p(6)) is necessary to
define ® for any given pixel whereas from our above arguments
measurements for multiple ®(¢) are needed for the conven-
tional DWI method. Later we present a simulation that seems to
suggest that our conjecture is correct for the case we present in
the next section.

2) 3D case, primary anisotropy A, >, = A,

This case has a simple graphical interpretation. Only the
first principal direction is to be reconstructed. The other two
eigenvectors that correspond to the same eigenvalues can be
defined arbitrarily in the plane perpendicular to the first
principal direction. The tensor components are independent of
this particular choice. We can define three eigenvectors for a
given voxel using two angles © and ® (similarly O and ¢ are
illustrated on Figure 1).

)?1 = [sin@cos@,sin@sind),cos(a]T
)?2 = [—sinCD,cosd),O]T (®)
)?3 = [—cos@cos@,—cos@sinCD,sin@]T
where 0 = ® <2m and 0 < ® <x/2 is only considered. Then
@ is defined as® = [sim‘}cosq),sinﬁsin(b,cosﬁ]Tand
& Do = A [sinOsin@cos(¢ - @) + cosﬁcos@]2 +
}\2[sinﬁzsin(¢ - <I>)2 + (cos¥sin® — sindcosOcos (P — <I)))2]

®
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Figure 2. The source of ambiguity in reconstruction of principal directions from data acquired by standard MR DWI when @ is fixed. (a) 2D
case. Given d = ‘(f)r)? ¢ "and 7' provide the same d. The principal vectors located in the upper half can be chosen. (b) 3D primary

Ty

anisotropy case. TYVO values d, = “”1 X 1‘ and d, = (?); X 1‘ define two cones. The intersection of these cones in general provides the different
principal vector ¥, that satisfies d; and d,. The only upper hemisphere is shown.

Because the two functions ®(x) and ©(X) are unknown,
one can expect that two measurements with two different @ are
necessary when reconstructing the principal directions. This is
true in the case of TTDWI, because each @ is a function of 0.
However in the case of conventional MR DWI, where @ are
fixed, it is necessary to take three measurements to uniquely
define the principal directions. Taking into account that
@)+ @) +@'2) =1 and hy = Ay, the
equation & Do = (Xl—Xz)((f)T)?l)2+7»2 is satisfied for
equal vales of (T)T)? 1‘ . As it can be seen in Figure 2(b), each ®
and X : define a cone. Intersection of these two cones defines
%' which provides the same (f)lTD(f)l and (f)g D@, . In general,

= 1 . .
there are two such X in the upper hemisphere.

3) 3D case, secondary anisotropy \; >\, > hy

The existence of secondary myocardial anisotropy in the
cross-fiber direction was previously established [1]. In this case
it is necessary to estimate all three principal directions. They
can be parameterized by three Euler’s angles: a.(x), p(x) , and
y(x) for each voxel. We omit the corresponding notation here.
The three different measurements (three different nonstationary
®) may be required to reconstruct these three functions in
TTDWL. In the case of a stationary @ , that is conventional MR
DWI, three measurements are not enough to obtain unique
estimates of the principal directions. This can be understood in
terms of 3D tensor invariants:

Tr(D) = D, + Dyy +D_ =M ;— Ay +27»3 )
DD, +D D +D D - (ny +D + Dyz) =
Mhy+ M Ay + A0,

det(D)=D_D_ D_ +2D_D _D

5 XX yg b4 ny xz7yz
(DZZDX)’+Dy)'sz+DxnyZ) = 7\.17\.27\3. (10)

Providing, for example, D,,, Dyy and D,,, Dyz and ny are
defined up to sign change. Four measurements may be enough.
(Measurement components must be chosen carefully. It is a bad

choice to measure D, D,, and D, among these four

measurements. The tensor estimation still will be ambiguous.)
C. Reconstruction algorithm

For the purposes of this abstract we restricted our attention
to the more simple case of primary anisotropy. Only the first
principal direction was estimated. Since the MR DWI model in
(2) is nonlinear, the reconstruction with nonstationary ©
requires use of iterative methods [6,7]. In order to estimate

principal directions, the least squares differences between
modeled and measured projections can be minimized:

2
L@®)0() = 33 |rhe - as™ " an
0,t®
where
2, T RN R
nodelie, 1) = p(x)e® © PIVs-8-nar  (12)
and

L?)TD()%)L?) = A [sinOsin@cos(¢p— D) + cosﬁcos®]2+

kz[sinﬂzsin(q) - <I))2 + (cos¥sin® — sindcosOcos(P — CI>))2]

(13)
In order to minimize (11) with respect to the angle
functions, a gradient-type algorithm was applied. Note that the
minimization problem is complicated due to the fact that the
objective function is periodic with respect to the angle
functions; therefore, L has an infinite number of minima. We
implemented the gradient descent (GD) algorithm to minimize
L. At each iteration this algorithm updates each angle function
for a given voxel by its corresponding derivative of L. This
algorithm relies on an arbitrarily chosen relaxation parameter €,
that defines the step size in the gradient direction. This
parameter should be small enough to not over shoot the
downhill direction. The choice of a very small value of € leads
to slow convergence, however, it allows to stay near one of the
many minima.

III. RESULTS

A computer generated phantom was used to simulate the
diffusion that might be expected in a cardiac study. The phantom
is comprised of a circular cylindrical tube. The phantom
simulates the mid-ventricular wall of the left ventricle. The spin
density p is assumed to be uniform inside the phantom and zero
outside. The fiber structure of the myocardium is helical. The
principal vectors of the diffusion tensor are referenced to a



helical fiber structure with material coordinates (Xg, Xp X(),
which are orthogonal. The fiber axis X is located on the plane
of the wall normal to the radial axis R. The fiber angle in the
circumferential direction has a variation which is continuous
and linear. The angle changes from 60° to -60°, varying from
the endocardial to the epicardial wall in a radial direction. The
axis X is the cross-fiber in-plane axis and the axis X coincides
with R. The phantom was chosen to be independent of the z
coordinate so that one slice of the reconstruction was enough to
represent the entire phantom.

The phantom represented a 32x32 slice image of a
cylinder with an inner radius R; = 7 and an outer radius R,=14.
This grid size was chosen in order to achieve a comprehensive
visualization of the vector field of the principal vector. The
eigenvalues of the myocardial diffusion tensor were A; = 1.6,
A= A3=0.7. The spin density p was equal to 1 inside the
cylinder and zero outside the cylinder. The parameter g2 was
0.7, so gz)\] >1.

The projection and backprojection operation of the GD
algorithm were implemented, using a ray-driven operator.
Thirty two projections of the slice were generated over
0 =[0,m). The sampling bin width was equal to the
reconstructed pixel width. Two projection data sets were used
with two fully 3D rotated diffusion gradient directions

0 0=<m/2
W, = =0; 9=~ 14
! {(P /2 -0, 6275/2} 14
N 0, O=<m/2
By = {op=0+m/2; O= . (15
n/2-0, 0=m/2

The initial condition for the iterative algorithm was uniform:
® = m and ® = /4 for every voxel.

Figure 3 shows the behavior of the LS norm in (11) as a
function of the iteration number. Because the data is noise-free,
the algorithm converged to L=0. We chose 4000 iterations for
the final reconstruction of the noise-free data. This
reconstruction is nearly identical to the original phantom. (The
angular difference between Ophantom and reconstruction
principal directions was 1.6 +1.4°) A smaller iteration
number, however, can be used. Figure 4 presents the
reconstructed vector field of the first principal vector showing
the fiber structure of the heart for one transaxial slice. The first
principal direction is well reconstructed in the case of noise-
free data from only two diffusion-weighted projection data sets.

«’i//ﬁ////// //_4-—‘,‘77\% |
S
20
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Figure 3. LS norm as a function of the iteration number.

I'V. DiSCUSSION AND CONCLUSION

We have developed a novel approach to reconstructing
the principal directions of the diffusion tensor field. We have
also demonstrated that MR TTDWTI data acquisition is more
efficient than standard MR DWI data acquisition. Further work
is needed to prove this result mathematically. Our approach
requires use of an iterative algorithm. Further work is required
to increase the convergence rate. The choice of an optimal
direction of the diffusion gradient direction during acquisition
needs further investigation. Acquisition and reconstruction of
real data is currently underway.
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Complete Source Trajectories for C-Arm Systems and a
Method for Coping with Truncated Cone-Beam Projections

Hermann Schomberg
Philips Research Hamburg, Rontgenstrafie 24-26, 22335 Hamburg, Germany

1 Introduction

A C-arm system, such as the one shown in Figure 1, may be
used to acquire X-ray cone-beam projections of a patient’s three-
dimensional (3D) region of interest (ROI) while the X-ray source
moves along some trajectory around the ROI. Then, a 3D image
of the X-ray attenuation coefficient within the ROI may be re-
constructed from the acquired cone-beam projections.

In fact, C-arm systems are being used in this way, seee.g. [1, 2].
Typically, the source moves along a circular arc spanning an angle
of 180°-200°, and the image is reconstructed by a variant of the
algorithm of Feldkamp, Davis, and Kress [3]. As the cone-beam
does not cover the whole patient, the projections are truncated.
This is usually handled by extending the projections in a simple
manner parallel to the plane containing the source trajectory. In
practice, the true trajectory differs slightly from its ideal, but this
deviation can be measured [5, 6] and taken into account during the
reconstruction. The reconstructed image is subjected to a surface
or volume rendering process designed to extract and visualize
only the high contrast structures of the object under examination.

The reconstructed image itself is usually cluttered by severe
artifacts. Nevertheless, the high contrast structures, such as bones
or blood vessels filled with intraarterially injected contrast agents,
are well recovered. This is because such structures stand out well
against the background and are also reconstructed at the correct
geometric locations.

Accurate images of medium contrast structures, such as blood
vessels filled with intravenously injected contrast agents, or low
contrast structures, such as soft tissue organs, are not obtained
in this way. If this is to be improved upon, the following condi-
tions will have to be met: First, the data acquired by the C-arm
system must provide (after some preprocessing) accurate, though
sampled, cone-beam projections of the object function (the X-ray
attenuation coefficient). Second, the sampling density along the
trajectory and on the detector surface must be sufficiently high.
Third, the source trajectory must be complete in the sense that ev-
ery plane that intersects the ROI contains a source point. Fourth,
the cone beam projections must not be truncated. Under these
conditions, any standard exact cone-beam reconstruction algo-
rithm will produce an accurate estimate of the object function
within the ROI. It has been tacitly assumed that the object func-
tion varies only spatially. Imaging moving parts of the human
body, such as the beating heart, is not considered here.

Measuring accurate cone-beam projections of the object func-
tion presents a number of technical challenges, but no funda-
mental obstacles, and is also not considered here. Making the
sampling density sufficiently high is not a fundamental problem
either. The problem of designing source trajectories that are both
complete and realizable by appropriate C-arm systems is dis-
cussed and solved in Section 4. The remaining requirement for
non-truncated cone beam projections cannot be satisfied by any
realistic C-arm system when the object to be imaged is part of

Figure 1. Integris Allura C-arm system (Philips Medical Systems, Best,
The Netherlands).

a human body. As in the fan-beam case [4] one can show that
truncated cone-beam projections leave the object undetermined.
To cope with this fundamental limitation we suggest in Section 3
to extend the truncated projections in a relatively simple fashion
so as to fake non-truncated projections of an imaginary object
that is somewhat bigger than the ROI, and to apply a suitable
cone-beam reconstruction algorithm to the extended projections.
It will be argued in Section 3 that an image thus obtained can be
expected to differ, inside the ROI, from the true image merely
by some unknown, but smooth, nearly constant, and fairly weak
ghostimage. The reconstructed image would therefore still allow
the detection of fine anatomical details.

2 C-Arm Systems

A typical C-arm system, such as the one shown in Figure 1, is
equipped with a point like X-ray source and a planar X-ray detec-
tor, usually an image intensifier, which are mounted to the ends
of a C-arm. The C-arm is held by another arm, which we refer to
as the C-arm suspension. The C-arm suspension is attached to an
L-arm, which is mounted to the ceiling (or floor). The L-arm can
be rotated about a vertical axis. The C-arm suspension can be
rotated about a horizontal axis attached to the L-arm. By rotating
L-arm and C-arm suspension about their axes, the orientation of
the plane containing the C-arm may be changed. The C-arm it-
self may be rotated within this plane about an axis perpendicular
to this plane. All three rotation axes meet in a single point, the
isocenter. Also, the straight line from the X-ray source to the
center of the detector surface passes through the isocenter. The
rotations themselves are effected by servo motors. When one or
more of the the arms rotate, the X-ray source moves along a cor-
responding trajectory. The trajectory is confined to the surface
of an isocentric sphere and further constrained by the electrome-
chanical design of the joints connecting the arms.



3 The Reconstruction Problem

Points in space will be referenced with respect to a right-handed
Cartesian coordinate system, the laboratory system, which we
attach to the isocenter of the C-arm system such that the z-axis
points upwards and the y-axis along the patient table. The object
to be imaged is represented by a function f : R3> — R. The
source trajectory is represented by a smooth mapping a : A —
R3, where A = [A_, A, ]is abounded interval. When the source
is at position a(}), the sensitive area of the detector defines a
plane D(A) C R3. The sensitive area of the detector itself is
represented by the disk Dg(1) C D(X). The set of unit vectors
0 € S? such that the ray {a(X) + s | s > 0} hits Dg(}) is
denoted by So(A). The source point a(A) and the unit vectors in
So(A) define the cone Co(A) = {a(X) +s6 | s >0, 6 € So(1)}.
The biggest centered ball contained in all cones Co(X), A € A,
is denoted by By, its radius by ro. This ball is also the biggest
centered ball within which we can hope to obtain an accurate
reconstruction. In practice, r lies between 100 and 150 mm. We
define the function g : A x S — R by

o

gr,0) = /0 fla(r) +s0)ds. (1)
The function g(A, -) represents the (non-truncated) cone-beam
projection of f with vertex a(A). The data acquisition process
provides (a sampled and noise contaminated version of) the func-
tion g(A, u, v) = g(A, (X, u, v)), where (u, v) are local coordi-
nates in the detector plane D (1) and é()\, u,v) € Sp(1) is the unit
vector pointing from a(A) to the point (u, v) on Dg(X). Thus,
g(X, 0) is available only for A € A, 8 € Sp(A). Using these data,
we wish to reconstruct f in the ball By. When the object is a
part of a human being, the acquired cone-beam projections are
inevitably truncated, i.e., the support of f extends beyond By,
and there exist . € A and 6 € §2 \ So(X) such that g(A, #) # 0.

For a stable and accurate reconstruction of f in By it is neces-
sary that the source trajectory a satisfy the following complete-
ness condition (see [7] and the references cited therein): Every
plane that intersects the ball By contains a source point a(\.).
A source trajectory satisfying this condition will be called com-
plete with respect to By. The normals of the planes that contain
a source point a(1) and intersect the ball By form an umbrella-
shaped surface

U,ro) ={r0 | |r| <ro, 0 € %, a(h)-0 =r} 2)

within By. Using the correspondence between planes and their
normals, the completeness condition may be rephrased as fol-
lows: The collection of the surfaces U (X, ro), A € A, fills the
ball By completely.

In general, itis hard to prove by argument that a given trajectory
is complete with respect to By. However, acomputer may be used
to draw a large number of surfaces U (Ag, r9), . .., U (An, o) with
A =n(ky —A-)/N,n=0,1,..., N, and it may be checked
visually whether these surfaces will densely fill Bg as N — oo.

In the remainder of this section, we assume that the source
trajectory is complete with respect to By. Then, if the cone-
beam projections were not truncated, f could be reconstructed
inside By using an appropriate cone-beam reconstruction algo-
rithm, such as the filtered backprojection algorithm described

in [8]. This algorithm is designed to act on g(A, u, v) rather than
ong(i,0).

The development presented in [8] also allows one to derive the
explicit reconstruction formula

1
frec(x):—Z// K(x, 1, 0)g(A,0)dodxr 3)
8 AJS2
with the kernel

Kx,1,0)=
/ la’(x) - B
s2 lx —a()|?

Here, a’ is the derivative of a; &, is a regular and smooth ap-
proximation to the derivative of the §-function; M is a smooth
weighting function accounting for the fact that a plane can contain
several source points [7, 8]; and

M., B)S.(B - p(r,x))S.(B-0)dB. (4)

x—a(}))

A, = —
P = el

&)
When the conditions are right, one expects frec to tend to f inside
Bpasé é tends to 8’. A discretized version of (3) could provide the
basis for a (computationally inefficient) reconstruction algorithm.

More interestingly, the kernel (4) highlights an important prop-
erty of the reconstruction problem: Since 8, is concentrated near
zero, 8. (B - ¢ (A, x)) is appreciably nonzero only when § belongs
to a neighborhood of the circle S* N ¢(X, x)*, and 5.(B-0)is
appreciably nonzero only when § belongs to a neighborhood of
the circle S N @+. The mentioned two circles are identical if
0 and ¢ (X, x) are parallel; otherwise they have only two points
in common. As a result, K(x, A, §) is appreciably nonzero at
most when 6 and ¢ (A, x) are nearly parallel, i.e., when the ray
{a()) 4+ s | s > 0} comes close to x. In addition, K (x, A, 0)
depends smoothly and weakly on A and @ whenever a depends
smoothly on X and the ray {a(}) + s0 | s > 0} does not come
close to x. Although the reconstruction process is not strictly
local, it is still semi-local.

The reconstruction problem of 2D CT has similar properties
[9]. It is also possible to extend the ideas presented in [9] to the
3D case: From (3) we find that

Jrec(x) = fo(x) + fi(x) (6)

with

fo(x)z%// K(x,x 0)g(x, 0)d6 d, (7)
87 Ja Json)

fl(x)z%// K(x, %, 0)g(1,0)d0dxr. (8)
877 Ja Js2\so00)

The function fy is well determined by the available data, but f;
is completely undetermined. Owing to the semi-local nature of
the reconstruction process, fp will be fairly smooth well outside
By and decay quickly there. Conversely, f; will be fairly smooth
well within Bg. Also, a crude guess of the truncated portions
of the cone-beam projections should suffice to compute a fair
approximation to f inside By. Already a crude guess of the
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Figure 2. A C-arm system drawn as a series of links and joints.

integrals along the lines that pass through a centered ball By a
little larger than By should suffice for this purpose.

These observations suggest the following method for coping
with truncated cone-beam projections: 1. Choose a centered ball
By somewhat bigger than By. For each A € A, let D{()\) be
the perspective projection of By from a()) onto D(A). 2. Ex-
tend each truncated cone-beam projection g(A, -, -) radially from
Do(X) to D1(A) using, for example, the 1D extension method
proposed in [9] in radial direction. 3. Reconstruct f in By by
applying the filtered backprojection algorithm described in [8],
or some other suitable cone-beam reconstruction algorithm, to
the extended projections.

An image reconstructed in this way can be expected to differ
inside By from the true image merely by some unknown, but
smooth, nearly constant, and fairly weak ghost image.

4 Complete Source Trajectories

To specify and design source trajectories, we adopt a method
commonly used in robotics [10]. The first step is to model the
C-arm system by a series of rigid links connected by revolute
joints. Figure 2 illustrates the idea. There are four links, denoted
by lo, I1, I2, I3, and three joints, denoted by ji, j2, j3. Link [y is
fixed to the laboratory. Link /; represents the L-arm, link /5 the
C-arm suspension, and /3 the C-arm. Joint j; connects links /5|
and lx, k = 1,2, 3. Each joint defines an axis of rotation, and
these axes intersect in the isocenter.

Next, a right-handed Cartesian (xx, yk, zx)-coordinate system
is attached to link /x, k = 0, 1,2, 3. There is some freedom
in the choice of the origins and orientations of these coordi-
nate systems; we make the choices indicated in Figure 2. In
the jargon of robotics, the coordinate system attached to link /3
is called the tool frame. The coordinate system attached to link
lp is called the base frame and coincides with the laboratory sys-
tem introduced in Section 3. The angle between the xj_1-axis
and the xj-axis, measured about the z;_; axis, is denoted by 6,
k =1,2,3. Each triple (61, 62, 63) defines a configuration of the
C-arm system. Figure 2 illustrates the configuration associated

with (61, 63, 63) = (0, —m /2, 0).

A point in space may be specified by its coordinates in either
of the four coordinate systems. It is explained in [10] how to
transform the coordinates of the point from the tool frame to its
coordinates in the base frame: If the point is represented by x3
in the tool frame, then it is represented by

xo = R(01, 02, 63)x3 &)

in the base frame, where R(01, 0, 03) is a rotation matrix. This
matrix can be derived from the information provided in Figure 2
and is given by (see also example 3.3.3 in [10])

C1C2€3 — S183  —C1C283 — S1C3 €152
R(61,62,03) = | sicoc3 +c183 —sicas3 +cic3 8182
— 852C3 §283 (69)

with ¢; = cosO; and s =sinb, k =1, 2, 3.

In the tool frame, the source is always at position xg. =
(=rgc, 0,0)T, where rgc is the distance between source and
isocenter. When the angles 61, 6>, 63 are chosen as functions
of the parameter A € A, then x4 moves along the trajectory

a(h) = R(O1(2), 02(1), O3(A)Xgc, A €A (10)

in the base frame. Thus a trajectory may be specified by three
angular functions 6; (1), k =1, 2, 3.

To design trajectories that are complete with respect to By, we
may simply guess appropriate angular functions. Whether a can-
didate trajectory is complete with respect to By may be checked
as described in Section 3. The mechanical and electromechanical
constraints of the C-arm system will have to be obeyed. Angle
01 is preferably chosen constant, but for a complete trajectory
the other two angles must vary. Accordingly, the C-arm system
must allow a simultaneous rotation of the C-arm and the C-arm
suspension while cone-beam projections are being taken.

To realize a trajectory, the parameter A is replaced by a smooth,
monotonically increasing function of time, say t : [—, 4] — A,
and the resulting functions 6 (7 (¢)) are used to drive the corre-
sponding servo motors of the C-arm system. For physical reasons
the first and second derivatives of the entailing trajectory a(z(¢))
must vanish as ¢ |, 7— and # 1 4. This may be achieved by a
proper choice of the function . Alternatively, the original tra-
jectory may be augmented at both ends with extra segments for
acceleration and deceleration.

The left panel of Figure 3 illustrates a favorable source trajec-
tory found in this way. In this and the following examples, the
distance between source and isocenter is §10 mm, and the radius
of By is about 125 mm. The right panel of Figure 3 shows 28
umbrella-shaped surfaces within By, as described in Section 3.
As can be seen, this trajectory is complete. Figure 4 illustrates
four additional complete trajectories. The angular functions for
all five example trajectories are given in Table 1. The definitions
involve some magic constants which depend on the geometrical
parameters of the underlying C-arm system. As indicated in the
table, these example trajectories have various merits and may
impose additional technical requirements on the C-arm system.

As with a circular arc, the true trajectory will deviate a little
from the prescribed trajectory, but these deviations can be mea-
sured and taken into account during the reconstruction. With
high-end C-arm systems the deviations are also reproducible.
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row of Table 1.
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Computation of Unmeasured 34 Generation VCT

Views from Measured Views - Preliminary Results
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Figure 1. Measured source trajectory shown in black. Axial scans immediately
precede and follow a helix, providing mathematically complete data for unbounded
objects. Views corresponding to focal spot positions on a neighboring helix,
shown in red, are computed at each iteration of our numerical PDE solver. Data
corresponding to axial scans shown in blue at z = 0 and z =-0.063m were saved
to reconstruct in those planes by standard 2D filtered backprojection.

Abstract— We generalize work done in [1] by computing
unmeasured cone beam projections from measured projec-
tions. We do this by solving a characteristic boundary value
problem for an ultrahyperbolic differential equation [2]. One
potential use for this technique is reduction of cone-angle
artifacts suffered by approximate volumetric reconstruction
techniques, including Feldkamp. By working in the Fourier
domain, we convert the 2"% order PDE into a family of 15¢
order ODE’s. A simple 1% order integration is used to solve
the ODEs.

Keywords— ultrahyperbolic partial differential equation,
cone-beam CT

I. INTRODUCTION

E compute unmeasured volumetric computed to-

mography (VCT) views from measured views by en-
forcing range conditions [2] requiring that VCT data satisfy
the ultrahyperbolic partial differential equations:

fori,j=1,2,3 (1)

0? 0?
(5055, ~ 7,3 ) e =0
By solving a characteristic boundary value problem for
these equations, unmeasured views corresponding to un-
measured axial scans are computed. See Figure 1.
Fritz John’s range conditions in equation 1 were pub-
lished in ’38 and the idea of computing unmeasured views

Applied Science Lab, GE Medical Systems, PO Box 414, Milwau-
kee, WI 53201 email: sarah.patch@med.ge.com
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Fig. 2. Source trajectory is a horizontal circle above the patient.
Unmeasured cone-beam projections are computed for focal spot po-
sitions within the circle

has been considered for tomosynthesis type systems. In [1]
Edholm & Danielsson showed that cone beam projections
measured by a circular source trajectory lying in a single
plane could be used to compute parallel beam projections
of a different object. Their derivation uses fundamental
geometric arguments, as does the derivation in [3] showing
the necessity of John’s equation 1 for xray-transforms of
smooth, compactly supported functions. The same mea-
sured cone beam projections are used to compute unmea-
sured come beam projections of the same object. See Fig-
ure 2. The projections are computed in [3] much as we do
in this paper, by solving John’s equation 1 in the Fourier
domain. The tomosynthesis geometry allowed us to solve
analytically, whereas the helical system we consider here
requires a change of variables which creates a nasty forcing
term in the right-hand side of the transformed equation.
We have not found an analytical solution, so the results
presented here were computed using crude first-order inte-
gration.

John first introduced the ultrahyperbolic equation in a
different form, equivalent to 1 by a linear change of vari-
ables. The original equation’s variables did not correspond
to the xray transform used in computed tomography, but
did permit a mean-value theorem [4] and even analytic solu-
tions for special geometries [5],[6]. A mathematically exact
inversion formula exploiting John’s equation was presented
for “bounded” objects in [7].

Normalized VCT data measures line integrals of a three
dimensional imaging object’s linear attenuation coefficient
(LAC). The 1-dimensional source trajectory along which
we measure cone beam projections with a 2-dimensional
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Fig. 3. Xp(n; &) integrates p along the line passing through n and &.

xray detector with pixels parameterized by (aq,as), pro-
viding 1 + 2 = 3 dimensions worth of boundary value (BV)
data on a characteristic surface. For a constant-pitch helix
of pitch p > 0 where the FS moves a distance 7~ during a
single rotation, we measure on the 1+ 2 = 3 dimensional
surface defined by
z = pb where aq,ay are free

We change variables to parameterize 3"?-Gen data and
rewrite the consistency conditions in the new coordinate
system. Notice that 1 is written in terms of six variables.
Figure 3. Our measured data represents line integrals of
a function defined in R?® and therefore should be a func-
tion of three independent variables. However, in a 3"%-Gen
system, the radii of rotation are fixed so we only measure
u for varying 6, z, a1, and as, where (6, z) parametrize
focal spot (FS) positions and (ay,as) correspond to pixel
location on a flat panel xray detector. See Figure 1. In
order for our dimension count to be correct there can be
only one independent constraint upon u. Modulo first order
identities on wu, all three of the conditions in 1 boil down
to the single constraint:

Ol Oug
2 _ 1 — 2
0 "oz (2)
-1
(p + d) (2alua2 + a12Uq,,q, + [(p+d)2 + a%] ua27a1)

subject to the boundary conditions which we measure

u(@,pf;ar,a2) = f(0;a1,as)

(3)
where p and d represent source-to-iso and iso-to-detector
distances, respectively. Notice that the left hand side of 2
is first order with respect to z and #. Although standard
numerical solvers for partial differential equations (PDEs)
can be used to solve 2, it is also possible to transform this
single PDE into a coupled system of ordinary differential
equations (ODEs), which we solve with a first-order inte-
gration. Numerical results are presented in Section II.

Fig. 4. Source trajectory for results presented here is comprised
of circles connected by a short helical segment, shown in bold red.
Each iteration of the PDE solver computed views along one of the
blue helical segments. Ideally, the helix is longer, but computational
costs prohibited us from using a full rotation helix to generate these
preliminary results.

II. NUMERICAL RESULTS

Preliminary results are presented here for a source tra-
jectory failing the Kirillov-Tuy completeness condition. We
consider here only data measured on a short segment of a
constant pitch helical segment source trajectory. Results
are computed both with and without noise in the mea-
sured data. The incompleteness of our measured data im-
plies that a wedge of Fourier components comprising less
than 2% of the Fourier components of our computed pro-
jections are inaccessible. We therefore fill in these missing
Fourier data both with and without noise. We hope to
extend our numerical solver to handle complete source tra-
jectories consisting of two axial scan trajectories connected
by a constant pitch helical scan. (Remember, an axial scan
corresponds to pitch p = 0!)

A. System Configuration

Noise-free test data of a simple phantom object was
simulated assuming a 512 x 512 array with pixel pitch of
1.5e — 3 m, source trajectory with helical pitch 150 mea-
sured at isocenter, and 984 views per 27 gantry rotation.
The FS moves on a radius of 0.541m, whereas the detec-
tor is slightly closer to the z-axis, rotating at a distance of
0.408m. With this system geometry and helical pitch, the
FS moves 0.128m in a single rotation. Note that we are
working nowhere near the theoretical maximum pitch for
exact reconstruction. With this (perhaps suboptimal) dis-
cretization, dz <<< df and at each iteration of our PDE
solver, only a few neighboring projections contribute to
the next step. See Figure 4. In the tests presented here we
solved only for projections on a thin ring around the center
of our phantom to reduce computation time.

Our phantom object is unbounded, consisting of one
large ellipsoid full of water and containing several homo-



Fig. 5. Projection measured with FS at (,z) = (0,0). The spine
parallel to the z-axis is barely visible.

geneous density inclusions: one thin rod parallel to the
patient axis, two smaller ellipsoidal air pockets which are
surrounded by three higher density rings. The rod simu-
lates a spine, the air pockets simulate lungs, and the rings
simulate ribs. Object centers, dimensions, and densities
listed below:

tissue type center  eccentricities/radii density
(cm) (cm) = LAC
water body  (0,0,0) (20,10, 1e6) 190
spine (—4,0,0) (1,1, 1e6) 304
lung, (2,—4,0) (3,3,8) 0
lung, (2,4,0) (3,3,8) 0
riby (0,0,—-5) 1/8.5 304
riby (0,0,0) 1/8.5 304
ribg (0,0,5) 1/8.5 304

Table 1. Different tissue types, their sizes, positions, and
attenuation coefficients are listed above.

The linear attenuation coefficient (LAC), u € Cy is
bounded and for each (6,z) pair, has compact support
in ay, and as. However, the LAC is “unbounded” with
respect to the detector, since the water body and spine
are longer than the detector. We should note that this is
a relatively benign with little frequency content in the z-
direction. A projection taken with focal spot in the central
plane is shown in Figure 5.

B. Noise-Free Results

Boundary value data as described in 3 from source po-
sitions on the helical source trajectory were first simulated
without noise and used to solve equation 2. The central
columns from each projection with a full of spot position
in the middle blue circle shown in Figure 1 were compiled
to create a 2D axial sinogram. The reconstruction of that
central plane is compared to the mathematically exact im-
age in Figure 6. Notice the slight shading across the image
and broadening of the rib. These errors are due to inaccu-
raies in our first-order numerical solver, since our data is

Fig. 6.

Reconstruction via standard 2D filtered-backprojection of
true and computed sinograms. No noise was added to the projections
from which the second sinogram was computed.

noise-free. Vertical and horizontal profiles across this same
reconstructed slice are shown in Figure 7.

C. Noisy Results

The same code was run to test robustness to noise where
both additive and multiplicative noise were added to all
“measured” projections as follows:

Unoisy (0, 1, 2) = Utrye (6, a1, 2)(1 + 0.005X ) + 0.05%’)

4

where X,Y € N(0,1). Projections in the axial sinogram

computed from noisy BV data are compared to noisy sino-

gram projections with the same noise levels in Figure 8.

Whether the differences are repeatable for different real-
izations of the experiment remains to be determined.

III. CONCLUSION

For “bounded” objects, 3"¢-Gen helical VCT data can be
reconstructed exactly once the 3"?-Gen version of John’s
equation has been solved. To reconstruct a volume using



Fig. 7. Notice that Gibbs ringing is the largest source of error in the
vertical profile (bottom) but that the shading artifact can be seen
in the horizontal profile (top). In both cases, locations of edges are
accurately recovered.
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Fig. 8. Profiles of projections computed from noisy boundary value
data as well as noisy projections measured directly are both plotted
in heavy dots. The difference between these noisy profiles is plotted
below in a thin black line.

2D filtered backprojection, we solve for all projections cor-
responding to focal spot positions on the cylinder, saving
at each iteration only data on the central columns to gen-
erate 2D axial sinograms. Because our numerical scheme
was low order, we were forced to solve for all projections
anyway. A higher-order solver would allow us to take larger
step sizes, and more importantly, improve our solution ac-
curacy. However, a high-order scheme is elusive [10].

Our next task in this effort is to incorporate boundary
value data from 2 circles + helix source trajectory, elim-
inating the need to “fill in” inaccessible Fourier compo-
nents. This is straightforward numerical work. Our next
task, developing an exact method for “unbounded objects”
will require more effort. Views of unbounded objects are
not exactly recovered using this technique. Whoever as
the size of the flat panel detector rate increases errors due
to the unbounded object problem decrease. Although the
errors are likely to be small, a mathematically exact solu-
tion analogous to that in [8],[9] is required to complete our
analysis.
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Abstract

The modeling of 3D Compton scatter in SPECT is
complicated by the use of avariety of collimator geometry. To
date, effective and efficient modeling of 3D Compton scatter
in parallel-beam SPECT has been made possible by Frey and
Tsui [1], Zeng et a [2], and Bai et a [3]. For fan-beam and
cone-beam SPECT, the model in [3] can effectively model
first order 3D Compton scatter. But for varying-focal-length
fan-beam and cone-beam SPECT, no effective scatter models
have been developed so far.

We propose in this work a generalized model for 3D first
order Compton scatter in SPECT for different collimator
geometry. The dice-by-slice blurring technique in [3] is used
to generate a complete set of first order Compton scatter
projections; the scatter projections are then properly rebinned
according to the specific collimator geometry to obtain the
scatter estimation. When generating the complete set of scatter
projections, a set of virtual planar detectors with parallel-beam
collimation are used to orbit around the object for scatter
detection. Detailed discussion of this generalized model is
provided in the METHODS section.

l. INTRODUCTION

In SPECT data acquisition, Compton scattered events are
detected inevitably along with the primary (non-scattered)
events due to the finite energy resolution and finite spatia
resolution of the detectors. A photon usually loses part of its
energy and changes its direction after being Compton
scattered. Improper handling of the scattered photons can thus
lead to the incorrect positioning of the source photons, and as
a consequence, the reconstructed images can be degraded both
quantitatively and qualitatively.

The primary difficulty for Compton scatter compensation
in SPECT imaging is to obtain accurate scatter estimation.
There are two magjor categories of techniques to obtain scatter
estimation. One is the direct scatter estimation from data
acquired using scatter energy window(s). Techniques in this
category are easy to implement but not accurate. The other
one is the modeling of the scatter from the attenuation map
and the emisson map during image reconstruction.
Techniquesin this category can be accurate but are difficult to
implement, especially when complicate collimator geometry is
used.

There are many techniques devel oped for the modeling of
Compton scatter in SPECT. 1) Using Monte Carlo simulation
for each specific scan [4-6]. 2) Using physical measurement to
obtain the scatter response of a specific scan setup, the
measured response is used as a characteristic of the given

SPECT system [7]. 3) Using idea integration based on the
scatter cross-section described by the Klein-Nishina formula
[8-9]. 4) Using ray driven projector/backprojector to model
first order Compton scatter [10-12]. 5) Using a dab derived
scatter model [13-18]. 6) Using an effective scatter source
estimation model [1,19]. And 7) using a slice-by-dlice blurring
technique to model 3D first order Compton scatter [2-3, 21].
While amost al these techniques are effective to model
scatter for parallel-beam SPECT, only [3] and [20] have
shown to be effective and efficient for fixed-focal-length fan-
beam and [3] for fixed-focal-length cone-beam SPECT.

In this work, we develop a generalized model for 3D first
order Compton scatter in SPECT, using the dlice-by-dlice
blurring technique [3] and scatter projection rebinning
technique. The application of this model in SPECT with dant-
hole collimator, annular collimator, and fan-beam and cone-
beam collimators with both fixed-focal-length and varying-
focal-length are discussed.

Il. METHODS

A. The dlice-by-dlice blurring technique for first order

Compton scatter

There are three basic principles for the slice-by-dlice
blurring model for first order Compton scatter described in
[3]. (1) For each projection angle, photons emitted from a
point source and scattered at a scattering point can only be
detected at a certain position at the detector surface due to the
assumption of perfect collimation. This means that when the
position of point source is given, there is a one-to-one
relationship between the positions of the scattering point and
the detecting point, and thus the scattering angle for the
detected scattered photons is unique for each scattering point.
Figure 1 shows an example in fan-beam geometry. (2) For a
given point source, on a scattering slice which is parallel to
the detector surface, the photon energy and scattering angle
dependent factor of the scatter probability (given by the Klein-
Nishina formula) has a 2D distribution. This 2D distribution
can be approximated using a 2D Gaussian function,
considering the energy detection probability, the energy of the
incident photon, and the detection energy window. (3) The 2D
Gaussian function of the scattering slice which is closer to the
detector surface (and thus further from the point source) can
be obtained by a dice-by-dlice blurring from the 2D Gaussian
function of a scattering slice which is further away from the
detector surface.

The generation of scatter estimation using this technique
includes three steps. Step 1: the generation of the intermediate
scatter source image (ISSI) from the attenuation map using



slice-by-dlice blurring. The value of each element of ISSI is
the production of the source intensity, the effective attenuation
from the point source to the scattering voxel, and the
scattering angle dependent factor of the scatter probability at
the scattering voxel. The solid angle subtended by the element
with the origin at the point source is aso considered. Step 2:
the generation of the effective scatter source image (ESSI)
from ISSI, which is a voxel-by-voxe multiplication operation
of the ISSI and the linear attenuation coefficient map. And
step 3: the projection of the ESSI using a slab-by-dlab blurring
model to generate the final scatter estimation [21].

Collimator
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Figure 1. Photons that are originated from source SS and
scattered at scattering point SC can only be detected at point D
on the detector surface under the assumption of perfect
collimation.

The dlice-by-dlice blurring model includes the non-
uniform attenuation from the source to scattering point in Step
1 and from the scattering point to the detecting point in Step 3.
The geometric point response effect of the SPECT system can
also be included in Step 3. In Step 2, the effective non-
uniform scatter probability of a scattering voxel is considered.
Using this model, one can accurately estimate 3D first order
Compton scatter along a give direction for any scattering

media.

B. A generalized model for 3D Compton scatter

When photons shine on a scattering voxel, they can be
scattered to a 4 solid angle, theoretically. We can divide this
4+ solid angle to a series of sub-solid angles. The scattered
photons in each sub-solid angle can then be detected by using
a planar detector with parallel beam collimation. In this way,
we can obtain a complete detection of the photons that are
scattered by the scattering voxel. Figure 2 illustrates the basic
idea of generating a complete set of scatter projections.

The generalized model includes the following two steps.
Step 1. Using the slice-by-slice blurring model to generate a
set of scatter projections, assuming that we use a set of virtual
planar detectors with parallel collimation to detect the
scattered photons. Each parallel scatter projection contains the
scatter estimation for the corresponding sub-solid angle, and
thus the set of parallel scatter projections form a complete
scatter estimation. Step 2. For a given SPECT geometry,

using an appropriate rebinning process to obtain the scatter
estimation for all the detector bins. In this step, the set of
generated scatter projections in Step 1 is used for rebinning.
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Figure 2. A complete scatter estimation can be obtained through
slice-by-dlice blurring model, using one virtual planar detector
with parallel collimation at each sub-solid angle.
C. Implementation of the model
1. Slant hole collimation, planar detectors

For planar detectors with slant hole collimation [22], the
collimation in each segment is essentially parallel. Figure 3
shows the geometry of a bilateral slant-hole collimator. The
collimation directions of different segments are different. For
each segment, one only needs to generate a series of parallel
projections, which have different distances in the direction of
the collimation, using virtual planar detectors (dashed lines in
Figure 3) with parallel collimation. For a detector bin i on the
slant detector, the rebinning procedure is to first determine its
interception position (k, i) with one of the parallel scatter
projections k , and then estimate its scatter using the scatter
values of the bins closest to (k, i) of projection k. If we use
bin_sizel cog(f) as the bin size in the slant direction, and
bin_size in the parallel direction, no interpolation is needed for
the rebinning. Here bin_size is the slant-hole collimator bin
size and [ is the slant angle. For this special collimation
geometry, one can incorporate the asymetric geometric point
response of the detector in Step 3 of the slice-by-slice blurring
model during the generation of complete scatter estimation.

2. Parallel collimation, annular detectors

Figure 4 shows the geometry (transaxial cross section) of
a SPECT system with annular detector and parallel
collimation. In the axial direction of the detector, the
collimation is also parallel. A complete set of scatter
projection can be obtained by using a set of virtual parallel
detectors evenly distibuted along the annular ring. For a
detector bin corresponding to angle C in Figure 3, an accurate
way to estimate its scatter is to generate a virtual parallel
scatter projection (with same bin size as the annular detector)
for this angle and pick up the scatter value directly. If only the



parale projection in the neighboring angles A and B are
generated for the sake of decreasing computational burden, an
interpolation step should be taken for the rebinning.
Explicitly, we first find the bins (A, i) and (B, j) on the planar
parallel detectors at angles A and B that correspond to the
detector bin in direction C. If their values are S(A, i) and S(B,
j), then the scatter at the detector bin in angle C can be
expressed as.

[S(A, i) [ (B-C)+S(B, )[(C-A)](EB-A). (1)

Objet

Detecta

Central projection

Figure 3. Bilateral slant-hole parallel collimation.

Note that here we simply consider the angular
interpolations between neighboring projections. To be more
accurate, a small compensation of solid angle difference
should be made due to the longer distances from (A, i), and
(B, j) to the center of rotation than the detector bin at angle C.
One can project the bin to parallel projections A and B and
then sum up the values of the projected bins. Thus equation
(1) becomes:

0 U
BES(A, HUB-C)+3 3B, )) EQC-A)EJ(B -A)
i j

3. Fixed-focal-length fan-beam and cone-beam collimation,

plane detectors

Figure 5 illustrates the geometry of a SPECT system with
fixed-focal-length fan-beam collimation in the fan direction
and parallel collimation in parallel direction. For each angle
from the focal point to a detection bin in the fan direction, we
generate a scatter projection using a virtual planar detector
(dashed lines in Figure 5) with parallel collimation. The
rebinning step assigns to the detector bin the scatter value of
the centra bin of the virtual parallel scatter projection. If one
uses less number of angles than the number of binsto generate
the scatter responses, the scattered value at each detector bin
can be obtained with a ssimple angular interpolation as is the
same as described in equation (1). However, when
compensating for the changed solid angle, equation (2) should
be slightly modified to reflect the fact that the projected bin(s)

on one of the neighboring virtual projection are closer to the
center of rotation, and thus the subtended angles are increased.

When performing SPECT scans using fixed-focal-length
fan beam SPECT systems, sometimes a non-circular orbit is
used [23] to avoid truncation or to make the line of focus
remain fixed to the center of the organ of interest, etc. For
these scans, the focal-point orbit function should be used to
determine the relative position of the center of object matrix to
the focal point and the detector surface at different projection
angle for proper scatter projection rebinning and solid angle
compensation.
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Figure 4. An annular detector with parallel collimation.
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For planar detector with fixed-focal-length collimation,
the generation of the complete set of scatter projection is
three-dimensional. The scatter projection rebinning is also
three-dimensional.
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Figure 5. Fixed-focal-length fan-beam geometry.

4. Varying-focal-length fan beam and cone beam

collimation, planar detectors

For varying-focal-length fan beam collimation and planar
detectors, one can use the same scheme as for fixed-focal-
length fan beam collimation and planar detectors to obtain the
scatter estimation. The difference is that when rebinning, one
should use the focal-length function [24, 25] to determine
which parallel projections should be used for rebinning. The
direction of these scatter projections are determined by the



detector bins and the position of
corresponding to these bins.

For varying-focal-length cone-beam collimation, the
generation of complete set of scatter projections should be
three-dimensional, and the interpolation described in equation
(2) should aso be three-dimensional .

It should be noted that for SPECT imaging using varying
focal-length fan-beam or cone-beam collimation and planar
detector, the focal point closest to the detector surface should
be out of the object of interest to avoid multiple images.
However, this restriction is not needed for scatter estimation
using this generalized scatter model.

the focal points

[1. DISCUSSION

The scatter model proposed in this work is based on the
assumption that a complete first order 3D Compton scatter
projection can be obtained by using a set of virtual planar
detectors with parallel collimation. This assumption is
accurate when enough number of parallel scatter projections
are generated. Simulation studies for fixed-focal-length fan
beam SPECT will be presented. Simulation studies for
varying-focal-length fan-beam and cone-beam collimation
will be performed when a proper simulator is available.
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Computational Determination of Orlov Volumes
S.D. Metzler, J.E. Bowsher and R.J. Jaszczak

Abstract— Objective: Orlov has derived the sufficient con-
ditions for adequate two-dimensional projection sampling of
a three-dimensional density function in order to reconstruct
that density function. This condition may be represented
as a curve of vantage angles on a unit sphere of directions.
Orlov’s condition states that the density function can be
unambiguously reconstructed if the curve of vantage angles
intersects all great circles on the sphere. The set of points
for which Orlov’s condition is met may be termed the Orlov
volume. Although this volume can be intuitively determined
for simple sampling orbits, there is no known algorithm in
the literature for determining the volume for the generalized
case. Further, the Orlov volume principle may be applied to
converging and diverging collimators, in addition to parallel-
hole collimators. Methods: We consider a voxelized repre-
sentation of the volume inside an orbit of a given collimator
type. We then construct a digitized version of the vantage
points of the voxel for a given camera orbit. We then de-
termine if any great circles can exist on the Orlov sphere
without intersecting the vantage curve. Results: We have
implemented this algorithm in C++4 using Object-Oriented
programming techniques. The algorithm considers generic
collimator types, of which we have currently implemented
slant-hole, parallel-hole and pinhole collimators. Other col-
limator types can be added without modification to the al-
gorithm. Multiple orbits can be simultaneously considered.
Multiple collimator types can also be simultaneously consid-
ered. The output is the voxelized volume that meets Orlov’s
condition. Conclusions: The algorithm has successfully de-
termined the Orlov volume in cases that are easily verified
intuitively. It has been used to study the more complex
scenarios of pinhole collimators following spiral orbits and
simultaneous acquisition of parallel-hole and slant-hole colli-
mators. This technique may be useful for studying sufficient
orbits and understanding sampling artifacts.

Keywords— Orlov, Reconstruction, Sufficient Sampling

I. INTRODUCTION

In his work with electron microscopy, Orlov derived the
sufficient-sampling condition for three-dimensional recon-
struction from projection data [1]. He stated his condition
geometrically: the curve of vantage angles on a unit sphere
of directions must “have points in common with any arc
of a great circle [1].” If this condition is met, the sampled
density function can be unambiguously reconstructed.

Two Orlov spheres are shown in Figures 1 and 2. Fig-
ure 1 shows the vantage curve for a slant-hole or tilted
parallel-hole collimator following an orbit that coincides
with the vantage curve. It is possible to draw great cir-
cles on the Orlov sphere that do not intersect the vantage
curve. The projection data derived from this orbit would
be insufficient to unambiguously reconstruct the source. In
Figure 2, the vantage curve for a parallel-hole collimator is
shown. The collimator is not tilted. The vantage curve
intersects all great circles on the sphere.

Tuy and Smith realized that Orlov’s condition is met

This work was supported by DOE Grant DE-FG-02-96ER62150,
NIH Grants CA76006 and CA33541 and the Whitaker Foundation
Grant RG-99-0305.
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Equator, great circle

Vantage Curve
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Fig. 1. Orlov Sphere and Vantage Curve for Slant-hole Collimator.
The figure depicts the vantage curve for a slant-hole collimator as
it observes a source point at the center of the sphere. The camera
follows a circular orbit that coincides with the vantage curve. It is
possible to draw great circles on this sphere that do not intersect the
vantage curve. This vantage curve is the same as the vantage curve
of a tilted parallel-hole collimator following the same orbit.

by a limited set of points that will be referred to in this
paper as the Orlov volume [2,3]. It has been observed that
reconstruction artifacts occur in regions outside the Orlov
volume [4].

The Orlov volume can be determined intuitively in the
cases of simple collimator types, such as parallel-hole, fol-
lowing simple circular orbits. The symmetry of the sam-
pling makes the Orlov volume cylindrical in this case. How-
ever, there is no known algorithm in the literature for de-
termining the algorithm for the generalized case of non-
parallel-hole collimators and non-circular orbits.

A method has been developed to computationally deter-
mine the Orlov volume for any set of collimators following
any set of orbits. Herein this method will be described.

II. ALGORITHM

A voxelized representation of the volume to evaluate is
created. Then a set of collimator models is constructed to
simulate the positions, orientations and spatial extents of
the collimators. For example, a single parallel-hole colli-
mator following an orbit that includes m projection views
would be represented by m collimator models. Two colli-
mators with m and n projection views, respectively, would
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Fig. 2. Orlov Sphere and Vantage Curve for Parallel-hole Collimator.
The figure depicts the vantage curve for the parallel-hole collimator
as it observes a source point at the center of the sphere. The camera
follows a circular orbit that coincides with the the equator of the
sphere. The vantage curve coincides with the equator. All great
circles on this sphere intersect the vantage curve.

be represented by m +n collimator models. For each voxel,
a digitized version of the vantage points of the voxel are de-
termined from the set of collimator models. The digitized
vantage curve is then evaluated to determine if any great
circles can exist on the Orlov sphere without intersecting
the vantage curve.

This algorithm has been implemented in C++ using
Object-Oriented programming techniques. When started,
the program allocates and initializes a boolean matrix rep-
resenting the voxelized volume to consider. It then reads
one or several orbit files and constructs a set of collimator
representations. All detector representations obey an ab-
stract interface that determines if a given voxel is within
the field-of-view of the collimator and the vantage angles
for that voxel.

The use of an abstract interface makes it possible to
model multiple collimator types simultaneously and extend
the program to consider new collimator types without any
change to the algorithm. The new collimator simply needs
to implement this interface. Multiple collimators can be
used because each projection view in the orbit file or files
results in the construction of a new collimator represen-
tation. All the representations are stored and considered
together when evaluating whether a voxel meets Orlov’s
criteria.

Each voxel is fully evaluated by considering the vantage
curve generated by all the projection views before the next
voxel is considered. This reduces the required memory con-
siderably. For each projection view, it is determined if the
voxel in question is seen by the detector at that view. If it

is seen, the vantage angles are recorded to make a vantage
curve.

After all the projection views have been considered for
a voxel, the vantage curve is evaluated to determine if any
great circles can exist on the sphere without intersecting
the vantage curve. The parameterization of a generic great
circle (Fig. 3) can be found by considering that the points
with the minimum and maximum z values are

Ponax = (sin @ cos ¢, sin 0 sin @, cos )

1
Trmin = (— sin 6 cos ¢, — sin @ sin ¢, — cos 6). (1)

A normal to the circle can be parameterized as

N = (sin (0 + g) cos ¢, sin <t9 + g) sin ¢, cos (0 + g))
= (cos 8 cos ¢, cos O sin ¢, — sin ).

2)

The normal can be used to dgtermine the basis vector
orthogonal to 7max, ?min, and N.

b= Trmax X N
by g 2
= [sinfcos¢ sinfsing cosf (3)
cosfcos¢p cosfsing —sind
= —Zsin¢g + ycos¢

Any point on the great circle can be parameterized as

(sin® coso,sind sing,cos0)

Orlov Sphere

quator,great circle

Great circle

(- sin@® cos, - 8ind sing, - cosO)

Fig. 3. Generic Great Circle on an Orlov Sphere. The point
(sin 8 cos ¢, sin @ sin ¢, cos #) has the maximum value of z on this curve.
The point (— sin 0 cos ¢, — sin 8 sin ¢, — cos 6) has the minimal value of
z on this curve. The normal to the plane of this great circle is N.



T = QThmax + Bb. (4)

Since | 7| = 1, | Pmax| = 1, |b| = 1, and Thnax and b are
orthogonal,
o+ 52 =1 (5)

Letting a = sin~y and 8 = cos~y,

7 = (sinysinf cos ¢ — cos~sin ¢, (©)

sin -y sin 6 sin ¢ + cosy cos ¢, sin «y cos 6),

where 0 and ¢ are the coordinates of the point of maximum
z on the curve and 7y parameterizes the curve. Equation 6 is
used to evaluate if any great circles can exist on the sphere
without intersecting the vantage curve.

III. RESULTS

The program has been tested using parallel-hole collima-
tors, slant-hole collimators, pinhole collimators and com-
binations of the above. Example volumes are described
below.

A. Parallel-hole Collimators with Circular Orbits

Parallel-hole collimators with circular orbits have been
evaluated and give cylindrical Orlov volumes (Fig. 4), as
expected. The radius of the cylindrical Orlov volume in
this case is larger than the collimator’s radius of rotation
(ROR). Clinically, there generally would not be activity
outside the ROR since the gamma camera passes through
that region, but, as the program indicates, that region is
sufficiently sampled. This is because the Orlov volume of a
parallel-hole collimator following a circular orbit depends
only on the detector dimensions and not the orbit dimen-
sions. That volume is cylindrical with extent given by
nw?d/4, where w is the width of the detector in the plane
of the orbit and d is the depth of the detector normal to
the plane of the orbit.

B. Pinhole Collimators

The algorithm can also be used to determine sufficiently
sampled volumes for converging-beam and diverging-beam
collimators. The pinhole collimator has been tested with
a circular orbit, giving a circular slice as the Orlov vol-
ume. This was expected, because all voxels that are off-
axis have insufficient data. The pinhole-collimator has also
been tested with a spiral orbit (Fig. 5) and gives a nearly
cylindrical volume. The defects in the cylinder are at the
ends, as expected because of the strong dependence on the
initial orientation of the camera.

C. Combined Parallel-Hole and Tilted Parallel-Hole

Combined parallel-hole and tilted parallel-hole have
been used to understand Orlov volumes in conjunction
with breast-imaging research using vertical-axis-of-rotation
(VAOR) orbits [4]. A digital phantom with a single pen-
dulous breast was used to study the utility of parallel-hole
acquisition around the torso using a standard horizontal-
axis-of-rotation (HAOR) orbit versus tilted parallel-hole

Orbit Path

Fig. 4. Orlov Volume for Parallel-hole Collimator with a Circular
Orbit. The voxelized volume meeting the Orlov condition for a cir-
cular orbit of an untilted parallel-hole collimator is shown in white.
The collimator’s orbit is shown by the superimposed circle.

acquisition around the breast using a VAOR orbit. The
VAOR orbit allows the camera to be positioned nearer the
breast to improve spatial resolution, but the HAOR or-
bit gives better Orlov sampling. Fig. 6 shows the Orlov
volume for a tilted parallel-hole acquisition with two addi-
tional arcs. Notice that the VAOR orbit does not yield a
volume that includes the entire breast. Fig. 7 shows the
Orlov volume for the tilted parallel-hole acquisition com-
bined with a parallel-hole orbit extending around the pos-
terior side of the patient. The VAOR orbit gives a much
larger Orlov volume.

IV. DISCUSSION

Orlov’s condition assumes continuous angular sampling
and infinitesimal sampling bins. Both of these conditions

Fig. 5. Orlov Volume for Helical Pinhole-Collimator Orbit. A slice
of the voxelized volume meeting the Orlov condition for a helical
orbit of a pinhole collimator is shown in white. The volume is nearly
cylindrical, except for defects at the ends (not shown) where the valid
volume depends on the initial angle of acquisition.



Fig. 6. Orlov Volume for Vertical-Axis-of-Rotation Tilted Parallel-
Hole Collimator Orbit. A parallel-hole collimator was used to sample
regions in and near the breast. The tilted acquisition was combined
with additional arcs near the sternum and lateral side of the breast.
A slice of the volume meeting the Orlov condition is shown as white.
The outline of the digital phantom is also shown.

are invalid in realistic acquisitions. By Nyquist’s theorem,
there are limitations in reconstruction resolution due to dis-
crete sampling. The discrete nature of the sampling merges
the concepts of Nyquist frequency and the Orlov volume.
This work represents an important future development.
The current algorithm has successfully determined the
Orlov volume in cases that are easily verified intuitively.
It has been used to study the more complex scenarios of
pinhole collimators following spiral orbits and simultane-
ous acquisition of parallel-hole and slant-hole collimators.
Further, it has improved understanding of artifacts found
in VAOR acquisitions of the breast. This technique may
be useful for studying sufficient orbits and understanding
sampling artifacts for complex projection acquisitions.

h

Fig. 7. Orlov Volume for Combined HAOR-VAOR Orbits. The same
orbit described for Fig. 6 was supplemented with a standard HAOR
orbit around the patient. The additional orbit greatly increases the
size of the sufficiently sampled volume. The outline of the digital
phantom is also shown.
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1 Introduction

In this work, the reconstruction of a 3-D image from
attenuated parallel-beam projections is investigated for
fully 3-D data acquisition geometries.

In a partially simplified model, the measurements pro-
vided by a SPECT scanner are considered to be attenu-
ated parallel-beam projections of the activity distribution
f. They are mathematically described by the formula

—+oo —+ oo
p(8,s) =/ dt f(s+t6) exp (—/ dlu(§+lQ)) (1)
— oo t
where @ is the direction of projection defined by the ori-
entation of the camera and the collimator holes and pu
is the attenuation function. Vector s is orthogonal to @
and is used to specify detector locations for the p(@,-)
projection.

A simplication of the relation (1) between the data and
the image f occurs when the activity is contained in some
convex region where p is constant. We will assume that
this condition holds. In this case, the data p(8,s) can be
modified into

$:0=0

+oo
9(6,5) = / dt f(s+ £8) ", )

where po is the value of p in the activity region. In
the literature, g is referred to as the exponential X-ray
(parallel-beam) projection of f in the direction . The
relation between p and g can be written in the form

where m, (8, s) is calculated from the attenuation map.
See [1] for details. Even if the attenuation map is not

*This work was partially supported by the National Institutes
of Health, grant number RO1 HL55610. The work of F. Noo was
partially supported by Marconi Medical Systems.

known, p can be converted into g in a reasonably accurate
way using the consistency conditions for the exponential
X-ray transform [2].

The set of directions € for which p is measured defines
the data acquisition geometry. We use  to denote this
set. By definition, 2 is a subset of the unit sphere. The
most common set €2 encountered in SPECT imaging is the
great circle (360° scan) or half great circle (180° scan) of
directions orthogonal to the patient bed. However, fully
3-D geometries are also possible, such as the RSH-SPECT

scanner [3] .

Image reconstruction from exponential X-ray projec-
tions on a great circle has been widely studied over the
last twenty years and is now well-understood, especially
thanks to the significant work of Tretiak and Metz [4] and
Pan and Metz [5, 6]. In fully 3-D geometries, the situa-
tion is very different. To our knowledge, only three works
concerning exact fully 3-D reconstruction from exponen-
tial X-ray projections have been published [7, 8, 9]. The
most general of these assumes that the set  is a union
of great circles.

Currently, the class of data sets for which a closed-form
inversion formula of the imaging equation (2) exists is
unknown. It is not even known what conditions a data
set must satisfy to be complete. The 3-D reconstruction
theory for X-ray projections (u = 0) [10, 11] is not easily
modified to handle exponential X-ray projections.

We have derived a closed-form inversion formula for the
3-D exponential X-ray transform which is valid for any
data set 2 made up of half great circles. A basic example
of such a set is the half equatorial band illustrated in
figure la; our presentation concentrates on this example.

Our results generalize all previously published results on
the exponential X-ray transform. They constitute one
step further towards a full understanding of this trans-



Figure 1: (a-left) Ilustration of the half equatorial band in-
cluding a half great circle. (b-right) Set A of vectors n corre-
sponding to all the half great circles in 2.

form?! which is an important mathematical tool in SPECT
imaging and in Intensity Modulated Radiation Therapy
(see [12] for more details on this latter application).

The basic idea is to combine a recent result on inversion
of 180° scans [13] with the TTR concept of Ra et al. [14].

2 A half great circle

Let C(n, E) be the right-oriented half great circle which
starts at E and is orthogonal to the unit vector n on
the unit sphere. See figure 1. Let b = OF where O is the
center of the sphere and let @ = n xb. From the results in
[9] and [13], it can be shown that f satisfies the following
integral equation

f(z) = fo(z,n, E) + w(z,n, E) * f(z) (4)

where fo(z,n,E) and w(z,n,E) are defined as follows.
The function fo(z,n, E) is obtained by filtered backpro-
jection (FBP) of the projections on C(n, E):

folz,n, E) =/

df e g7 (4,2~ (z-60)8) (5)
¢(n,B)

with

g7 (8,s) = / ds' g(8,s —s")d(s' -n)k, <§/ “(n % Q))
58=0 _

(6)

where k, is the notch filter used in the FBP formula of

Tretiak and Metz for the 2-D exponential Radon trans-
form [4], i.e.

ku(r)=1/2 /

Iv[> o /27

1A parallel submission to this conference by Wagner, Noo and

Clackdoyle addresses geometries consisting of a union of circles on
the sphere. This is a distinct class of geometries.

dv |v| &2

(7

The convolution kernel w(z,n, E) =d(z -n)w(z - a,z-b)
where 4 is the 1D Dirac function and

. sinh gov o (2sinh pov
w(u,v) = — q(u) + ﬁ{iuov _
sinh pg(v +iu)  sinh po(v — 7 u) } )
po(v +iw) pro(v — i)

In the above definition,

q(u) =/ do isign(o) ™7 (9)
R

is the convolution kernel of the Hilbert transform. Note

that w(z,n, F) is an odd function in z, i.e w(—z,n, E) =

—w(z,n, E).

Basically, for exponential projections g(f, s) measured on
the (360°) great circle C(n, E)NC(n, —E) the Tretiak and
Metz FBP gives an accurate reconstruction f. However,
on the (180°) half circle 8 € C(n, E), the reconstruction
gives an incorrect fo. The images fy and f are linked by
w according to equation (4).

3 An equatorial band

The discussion is now focussed on the half equatorial band
of figure la. Let A be the set of unit vectors corresponding
to all the half great circles in €. See figure 1b. For each
vector n, the starting point of the half great circle is at
OFE = cosne, + sinne, with tann = —Q-gy/ﬂ -e,.

For each half great circle in 2, an integral equation sim-
ilar to (4) can be written. Integrating equation (4) over
all n € A, one obtains an integral equation for f which
involves all the data from Q:

f(z) = folz) + W(z) * f(2) (10)
with
folz) = ¢ / dn fo(z,n, E), (11)
A
and
W(z)=c / dnw(z,n,E). (12)
A
In these equations, ¢ is a normalization constant:
czl// dn =27 (1 — cos by) (13)
A

where 6y is the half aperture of the band.



Using the same argument as in [9], it can be shown that
fo(z) can be calculated in a fully 3-D FBP way. The
expression is

folz) = A 8 ezl g (g s — (z-0)0)  (14)

where ¢ (8, s) is obtained from g(@,s) by 2-D convolu-

tion:
9" (8,s) = / ds' g(8,s —s') hu(8,5'). (15)
8'-6=0
The convolution filter h,, is given by
k
g kulllsl) e 8y
hu(Q,é) — ||§|| ||§|| (16)
0 otherwise

As readily observed from its definition, the filter A, is a
generalized function with singularities at s = 0. The im-
plementation of equation (15) therefore requires the use
of some regularization technique. For an accurate compu-
tation of g7 (8, s) from samples of g(#,s) on a Cartesian
grid, we recommend the implementation of (15) in the
Fourier domain with some apodizing frequency window,
such as the Hanning window. Such an implementation
requires the knowledge of the Fourier transform of the
filter hy,. It is shown in [9] that this transform is

Ho(6.v) = / | dseTm(9.)
5:6=0

C

(17)
where C,(6) is a subset of the great circle C(6) of unit
vectors orthogonal to 6:

Cu@ =CO\{n€CO) : |z (nx8) <po/2r}. (18)
Note, in particular, that C,(f) is empty when ||v|| <

to/2m because |v - (n X )| < po/2m for any n in this
case. Therefore, H,(6,v) = 0 if ||v|| < po/27.

4 Solution of the integral equation

In this section, we show that the integral equation (10)
admits a unique solution which can be expressed in the

= —/ dnw(n)|lv-(nx8)|, v-0=0
2 Je,ona

form of a Neumann series. First, note that the kernel
W (z) (equation (12)) is an odd function, i.e. W(—z) =
—W (z) because w(—z,n, E) = —w(z, n, E).

Let R be such that f(z) =0 for |z| > R and let
1 ifjz| <R
x(z) = { =

0 otherwise

(19)

In practice R is always finite since f is physically re-
stricted to a finite region. Using x, the integral equation
(10) can be rewritten in the form

f=xfo+txWxf)=xfo+Kf (20)
where K is an operator such that K f = x(W x f). Since

W is odd, we note that K is skew-symmetric.

Using the same arguments as those developed in [13], one
can show that K is bounded. Let v = 1/(1+||K||?). We
introduce a modified operator K = (1—=%) I+~ K where
I is the identity operator and rewrite (20) in the form

f=vxfot+Kf. (21)

By definition, ||K|| < 1. Therefore, the integral equation
(21) admits a unique solution

f=7Zf(IXf0-

=0

See [15] for mathematical details.

(22)

The reconstruction of f from formula (22) can be imple-
mented in the following way:

e Step 1: Compute x fo from the data g using (14).
e Step 2: Compute f, = Kan—l forn=1,...,N.

N
e Step 3: Compute fy > yx fo+7 Z Fn-

n=1

The function fy represents the reconstructed image. The
accuracy || fn — f]| of the reconstruction depends on || K]||.
In the absence of noise, the smaller || K|, the smaller || K]||
and thus the smaller the number of terms N required for
a given accuracy because the series converges faster.

Figure 2 shows results obtained from computer-simulated
projections of a heart phantom made up of ellipsoids, with
20% activity in the ventricules. The attenuation coeffi-
cient was g = 0.0152 and the half aperture of the band
was 6y = 25°. There were 120 x 30 projections (each of
128 x 128 square pixels of side 1.2 mm) and the recon-
struction was performed on a grid of 128% cubic voxels of
side 1.2 mm.



Z = k4
Z = k4
£ = B4

Figure 2: (top) Original phantom, (middle) FBP reconstruc-
tion fo using the data on 2, (bottom) reconstruction using 10
terms of the Neumann series (equation 22). Reconstruction
time: about 5 min. cpu per iteration on a SUN ULTRA 10.
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Abstract

This paper proposes an accurate row-action type
iterative method which is appropriate to reconstruct
sparse objects from a limited number of projections. The
main idea is to use the L, norm with p ~ 1.1 to pick up
a sparse solution from a set of feasible solutions to the
measurement equation. We also show that this method
works well in the 3-D blood-vessel reconstruction.

I. INTRODUCTION

Image reconstruction from a limited number of
projections is a well-investigated subject in tomographic
reconstruction fields. For example, this problem possesses
applications in visualization of 3-D blood-vessel structure
from angiographic projections and cardiac imaging with
various modalities [1]. In spite of a lot of works, however,
it is fair say that successful reconstruction algorithms
which can be used in clinical routine do not exist. This
paper proposes an iterative reconstruction algorithm
which is very powerful for sparse objects. Here, the
sparse objects refer to objects which have non-zero pixel
values only on a relatively small number of pixels. Such
objects appear in many instances of tomographic imaging.
In particular, we have the following three applications
in mind. The first application is the reconstruction
of cerebral or cardiac blood-vessel structure from a
limited number of angiographic projections measured
with a C-Arm or rotational-angiographic devices (digital
subtraction technique is normally used to eliminate
unnecessary background objects). The second application
is the cardiac SPECT or PET imaging where the cross
section can be approximately regarded as a sparse
object because the isotope normally concentrates only
on the heart. The last interesting application is the
reconstruction of tomographic dynamic sequences. This
problem can be also formulated as the reconstruction of a
sparse object in the following way. Let ¢ denote time and
assume that we have a good reconstruction f; at time ¢.
Then, fi+1 — ft becomes a sparse object if the motion
in the cross section is not so large. Therefore, we can
reconstruct fi11 — f¢ from a limited number of projections
gt+1 at time ¢ 4+ 1 if an accurate reconstruction algorithm
for sparse objects exists, which leads to an accurate
reconstruction of fiyi.

The proposed algorithm is outlined as follows. The
tomographic reconstruction problem can be formulated as
solving a linear equation AT = b where 7 is an image
vector, b is a set of measured line integrals, and A is

an m X n matrix relating I to b. When the number of
projections is small, many feasible solutions to AZ = b
exist because m < n. To pick up a good solution having
sparsity from a set of feasible solutions, we formulate the
problem as a bound-constrained minimum norm problem

(PPB):
minimize || 7 ||} /p subject to AT = band 0 < Z <1

where || ¥ ||, denotes the L, norm of # and the inequality
0 < Z <1 can be understood componentwise. The value
of norm parameter p has a large effect on the solution.
The best value of p for sparse objects is p = 0 because
lim, .o || @ ||} is equivalent to the number of non-zero
pixels. This choice allows to pick up an object which
has minimum number of non-zero pixels. However,
| Z [|5 /p is non-convex and is non-differentiable when
0 < p < 1 which makes it impossible to use well-known
convex optimization techniques to construct an iterative
algorithm. To overcome this drawback, we use p = 1.1 (a
slightly larger value than 1). For this choice, || & |5 /p
is both convex and differentiable so that we can use
standard convex optimization techniques. Furthermore,
p ~ 1.1 still allows to pick up a sparse solution to
AZ =1 compared to the use of ordinary Euclidean norm
p = 2. We construct an iterative method for the above
constrained minimization problem by using the dual
coordinate ascent method [2]. This method converts the
original problem (PPB) into a dual problem by using
the so-called Lagrangian duality. Since the dual problem
corresponding to (PPB) becomes a simple unconstrained
maximization problem, we solve it by using the coordinate
ascent method. In the primal space, this method can be
considered as a variant of Bregman’s method for convex
programming excepting the bound constraint 0 < 7 < 1
[3]. The resulting algorithm is of row-action type similarly
to the Algebraic Reconstruction Technique (ART). The
iteration converges fast by using a projection access order
proposed in the literature [4].

We believe that this method possesses some important
applications in tomography. As a first step, we have
applied this method to the reconstruction of 3-D blood-
vessel structure from a limited number of cone-beam
projections. The simulation results demonstrate that an
accurate reconstruction is possible from only 8 projections
for which the Feldkamp method and the ART method are
not valid anymore. Furthermore, we apply the method
to real-data measured with the cone-beam tomographic
imaging system using a synchrotron radiation x-ray
source [5].



II. PROPOSED METHOD

A. Problem Formulation

In tomography, the goal is to reconstruct an object
from line-integral projection data. A discrete version of
the projection process can be represented as

AZ=1b
where A = (a;;) is a real m x n matrix representing the
projection operator, ¥ = (x1,---,2,)" is a real vector
representing the object, and b = (bi, -+, bm) " is the
corresponding projection data. Let ¢; denote the j-th
column of matrix A.

For convenience to explain the method, we first consider
the following minimum norm problem (PP):

minimize || ¥ ||} /p subject to A% = b (1)
where 1 < p < 2. We use p = 1.1 for sparse objects
as mentioned in Section I. Though the problem (PP) is
simpler than the problem (PPB), it is still a nonlinear
constrained optimization, and is difficult to solve directly.
However, its dual will be an unconstrained optimization.

B. Lagrangian Duality

From the reference [6], the Lagrangian dual of the
problem (PP) is the following maximization problem
(DP):

maximize D(§) = b j— || AT§ 2 /q (2)

where ¥ = (y1,- - -, ym)T is a real vector, and ¢ = p/(p—1).
Let 2(4) = (21(%), -+, 2.(%)) T be a vector function whose
j-th component is z]( j) = |&] 717 'sign(c] ). If Z* solves
the problem (PP), then there exists ¢ ‘such that & =
Z(y*) and §* solves the problem (DP). Conversely, let *
solve the problem (DP), then the vector &* = Z(*) solves
the problem (PP).

C. Solving Mazimization Problem (DP)

Obviously, the number of the unknowns in the problem
(DP) is less than that in the problem (PP). Furthermore,
the problem (DP) is an unconstrained maximization which
is easier to solve than the problem (PP).

Differentiating (2), we get the following equations:
/ =\ -
Dy, () =0, i=1,---,m. (3)
Equation (3) is a system of nonlinear equations which

yields a solution of (2). Using the newton-like iteration
to each equation in parallel, we get

D, (™)

(1) _ (k) .

yz yz - 7—,5 Zzla"'7m' (4)
Dy (5™)

where 3 is the relaxation parameter. We define

n
by — Z aijlw;|? tsign(w;)

j=1

n
(¢—1) Zaw w772
j=1

Ai(wr, -+ wp) =

)

then for i =1,---,m, (4) can be written as

k+1 k = =
yz( ) :y,f )+6A1(Cir:l7(k)7acr—1r?j(k))? (41)
In fact, for convenience to implement, we use the
sequential Gauss-Seidel type iteration scheme (5) in our
program:
y’EkJFl) +6A( (kla"W Z:L
k, (k+1
(' g Zl Fagy Y+ T gy
expressmn of ¢ cj ¥ in the iteration. Equation (5) can be
regarded as the coordinate ascent method applied to
maximize D(%).

), ,m, (5)

where w is another

D. Algorithm

According to the duality, if £* and * are solutions
of the problems (PP) and (DP) respectively, then
¥ = |c Tk 151gn( T9), j = 1,---,n.  Though
it is difﬁcult to get an explicit iteration scheme for

j
Z, we can get one for W) We define gk =

k+1 k+1 k) (k k (ki
Y,y P B )T, gty

k+1 k+1 k+1) (K k (ke
(y§+)v "ayz‘(—-{)a ’L( +)7 §+)1""’ £”)) :u’(k’ )
ALY wy”) = E;rﬁ(kvi), and w; (kmt1) w](»kﬂ’l). Let

i—1 m—i
o —— ; o p—N—
Q(k’l) = (0, ) 0, Ai(w§k7z)v e 7w7(lk7z))v 0’ T O)T Then
from (5), we obtain
gt = pkea) 4 BOKAD (5)

Taking an inner product with ¢;, we finally get

wék,i+1) (k z)_hé,aw J(w! (K, z) w;k,z')% (6)

j = 1, ... 5 n
Note that (6) is a row-action type iteration. Note also that
(6) is exactly the ART method when p = 2. Unfortunately,
the iteration is instable when the denominator of A; in (6)

is near 0. In our program, we set the denominator to a real
constant M IN if its value is less than the constant MIN.

The algorithm is summarized as follows.

[STEP 1] Give an initial vector G(®) = (w§0), e, w
such that & = AT#O for some 7). W

[STEP 2] For k=0,1,---,
k is large enough or || G*)

[STEP 2.1] Let &V = g*). W
[STEP 2.2] For i =1,---,m, do the iteration (6). W
[STEP 2.3] Let g*+1) = glkm+1) @

[STEP 3] Suppose &* is the final result of [STEP 2], then
#*, whose j-th component is z} = |w}[?~ sign(w ), is the
required result. H

go))‘l'

do the following iteration until
— @**+D | is small enough. W

E. Dealing with Bound Constraint

In this subsection, we consider the bound-constrained
minimum norm problem (PPB). This problem is equivalent
to the following problem:



minimize F(Z Z f(z;) subject to AT = b
7j=1

[ tfp 0<t<1
where f(t) = { oo otherwise

of the above problem is

. The Lagrangian dual

maximize b

b’ j— G(AT)

n 0 t<0
where G(7 Zg xj), = t1/q 0<t<1 .
t—1/p t>1

Similarly to the previous (PP) case, we can get the
following iteration scheme which is like the iteration (6).

b; _Zazlg (kl

(hit1l) (ki) N =1
w;j =w; 7+ Baij—
Z a2 // kZ)
Unfortunately, g(t) does not have the second derivative
at t = 1. Therefore, we define ¢”(1) = ¢ — 1 for

implementation. And we set the denominator of the
fraction in the above iteration scheme to a real constant
MIN if its value is less than MIN. Suppose &* is the
final result of the above iteration, then Z*, whose j-th
component is =7 = g "(w *-‘), is the solution of the problem
(PPB).

III. EXPERIMENTAL RESULTS

A. Simulation Studies

We have applied the proposed method to
reconstruct 3-D blood-vessel structure from a limited
number of cone-beam projections. We have used
the 3-D blood-vessel phantom developed by the
phantom group of Siemens (http://www.imp.uni-
erlangen.de/forbild /english /results/index.htm). The
x-ray source positions are located on the circle with
uniform angular interval over 180°. The number of
source positions is 8 or 4 and each projection consists
of 256 x 256 pixels.  The reconstructed image has
256 x 256 x 256 pixels. We have compared the proposed
method with the conventional ART method which has
been often used to this kind of limited-data problem in
the literature. We used a projection data access order
proposed in [4] which allows a fast convergence. By
using this data access order, ten iterations were enough
to obtain satisfactory images. The computations were
performed with a PC with a Pentium III 700 MHz
processer and the required computational time for ten
iterations was about 30 minutes which is reasonable in
practice. Five transaxial slices of reconstructed images
after ten iterations are shown in Fig. 1 and Fig. 2
together with the corresponding slices of the phantom. In
Fig. 3, we also show 3-D graphic display corresponding
to the reconstructed images which is generated by using
the volume rendering software. The threshold value to

pick up the blood vessels from the reconstructed images
is manually optimized dependent on each method. The
proposed method succeeds in accurately reconstructing
the fine blood-vessel structure whereas the ART method
produces severe artifacts which make it impossible to
recognize thin blood vessels. These results strongly
demonstrate that the use of L, norm with p ~ 1.1 is
very powerful for sparse objects compared to p = 2
corrsponding to the ART method. Furthermore, the
use of bound constraint 0 < # < 1 could improve the
reconstructed images.

B. Real Data

We have also applied the proposed method to real
data measured with our cone-beam tomographic imaging
system using a synchrotron radiation x-ray source [5].
The cardiac blood-vessel phantom is used as a test object.
The result will be presented at the conference. We are
also applying the proposed method to cardiac SPECT
data. The current result shows that the proposed method
more accurately recovers the sharp boundary of blood
pool compared with the ART method.

IV. CONCLUSIONS

We have proposed an accurate iterative method which
is appropriate to reconstruct sparse objects from a limited
number of projections. The main idea of the proposed
method is to use the L, norm with p ~ 1.1 to pick up
a sparse solution from a set of feasible solutions. The
algorithm is of row-action type and can be efficiently
implemented similarly to the ART method. We have also
shown that this method works well in the 3-D blood-vessel
reconstruction from a limited number of cone-beam
projections.
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Fig. 1: Reconstructed transaxial slices from 8 projections.
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Fig. 2: Reconstructed transaxial slices from 4 projections.
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Fig. 3: 3-D graphic display of reconstructed images.
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Abstract

We reporton our first resultson the useof Algebraic Recon-
structionTechniqueqART) on helical cone-beanComputer
ized Tomography(CT) data. Two variantsof ART have been
implementeda standardnewhich considersasinglerayin an
iterative stepanda block versionwhich groupssereral cone-
beamprojectionsin calculatinganiterative update.Both seem
to producehigh-quality reconstructionsalthoughthe number
of cyclesthroughthe datato achieve those(betweenl5 and
20),while nothuge,is largerthanthenumberof cyclesthrough
thedataneededor reconstructingrolumesfrom dataacquired
from differentmodalities(1 iterationfor PET dataand 1 to 4
iterationsfor EM data). The reasorfor thatmaybedueto the
unevencoverageof pointsby the datacollectiongeometryre-
sultingin aslower rateof corvergence.

|. Introduction

Algorithmsfor imagereconstructiorfrom projectionsform the
foundationsof modernmethod=of tomographidmagingin ra-
diology, suchashelicalcone-beanX-ray computerizedomog-
raphy (CT). Helical cone-beanCT is an image modality in

which the cone-beantdataacquisitionis performedwith a heli-

cal motion of the X-ray source-detectarelative to the patient.
Thevalueof thehelix pitch determineshe speedf dataacqui-
sition, the biggerthe pitch value, the fasterthe acquisitionis.

In [1] we showved thatit is possibleto obtain high-quality re-
constructiongrom helicalcone-beanCT datausingART (Al-

gebraicReconstructiormechnique)even whenappliedto data
acquiredwhenusinga considerablybig pitch value.

An imagemodelingtool, which wasdescribedn a general
contet in [2, 3] and utilized in image reconstructionalgo-
rithmsin [4, 5], is therepresentationf imagesandvolumesus-
ing blobs, which areradially symmetricbell-shapedunctions
whosevalueata distancer from theoriginis

| 1—<r/a>2}mlm[um

for 0 <r < aandis zerofor r > a. In thisequationl, denotes
the modified Besselfunction of orderm, a is the radiusof the
supportof the blob anda is a parameteicontrolling the blob

bmaa(r) = ) oy

shape.A volumeis representedsa superpositiorof N scaled
andshiftedversionsof the sameblob;i.e.,as

N
T(X,y,Z) = z Cjbm,a,c( (\/(X_Xj)2+(y_yj)2+(Z_Zj)z> ) (2)
=1

where{(xj,yj,zj)}ﬂ-“=1 is the setof grid pointsin the three-
dimensional(3D) Euclidearspacedo whichtheblobcentersare
shifted.Oncewe have choserthesegrid pointsandthe specific
valuesof m, a anda, the volumeis determinedby the finite
set{c;})_, of real coeficients; the taskof the reconstruction
algorithmin this context is to estimatethis setof coeficients
from the projectiondata.

Theaim of [4, 5] wasto studythe choicesof the grid points
andof the parametersn, a anda, combinedwith implementa-
tion of thealgorithmto estimatehecoeficients,from thepoint
of view of obtaininghigh-quality reconstructionsn a reason-
abletime.

Il1. Helical cone-beam reconstruction us-
ing ART

It hasbeenpointedoutin [6] thatapplyingthe simplestform
of ART to cone-beanprojectiondataacquiredon a circular
trajectorycanresultin substandardeconstructionsandit has
beensuggestedhat a certainalterationof ART leadsto im-
provement.However, besideanillustrationof its performance,
no properties(suchaslimiting corvergence)of the algorithm
have beengiven. We still needa mathematicallyrigorousex-
tensionof the currentlyavailabletheoryof optimizationproce-
duresto includeacceptablesolutionsof problemsarisingfrom
cone-beandatacollection. We discusghis phenomenoin the
contet of reconstructiorusing ART with blobsfrom helical
cone-beantatacollectedaccordingto the geometryof [7]. In
[1] we shovedthat ART canindeedproducehigh-quality re-
sultswhenappliedto helicalcone-beandata.In this paperwe
will concentrat®n how to improve the corvergencerateof the
reconstructioralgorithmby makinguseof a block-ART algo-
rithm.



A. Standard ART

For this discussionwe adoptthe notationof [8], becauset is
naturalboth for the assumediatacollectionandfor the math-
ematicsthatfollows. We let | denotethe numberof timesthe
X-ray sourceis pulsedasit travelsits helical path multiplied
by the numberof lines for which the attenuatiorine integrals
areestimatedn the cone-beanfor asinglepulse.Thusl is the
total numberof measurementsndwe useyY to denotethe (col-
umn) vectorof the individual measurementg, for 1 <i <.
We let N denotethe numberof grid pointsat which blobsare
centeredpur desireis to estimatethe coeficients{c; }:.\':l and
therebydefineavolumeusing(2). For1<i <1, welet a;j be
theintegral of thevaluesin the jth blob alongtheline of theith
measuremer(notethatthesea;; canbe calculatedanalytically
for the actuallinesalongwhich the dataarecollected)andwe
denoteby A the matrix whosei jth entryis &j. Then,usingc
to denotethe (column)vectorwhosejth components c;, this
vectormustsatisfythe systemof approximatesqualities:

Ac~Y. 3)

In the notationof [8] thetraditional ART procedurdor find-
ing asolutionof (3) is givenby theiterations:

c@ s arbitrary,
. N o N
C§n+l) _ an) NG zll\‘<=1a;kck ai, (4)
k=18
for1 < j <N,
n=0,1,..., i=nmodl +1,

wherew(" is arelaxationparameterWhile thisproceduréasa
mathematicallyvell-definedimiting behaior (seeg.g., Theo-
rem1.10f [8]), in practicewe desireto stoptheiterationsearly
for reasonsof computationalcosts. We have found that for
the essentiallyparallel-beandatacollectionmodesof fully 3D
PET]9], FourierrebinnedPET[10] andTransmissiorklectron
Microscopy [11], onecyclethroughthedata(i.e.,n=1) is suffi-
cientto provide uswith high-qualityreconstructionsHowever,
our preliminaryexperimentsndicatethatthis doesnot happen
with helicalcone-beandata.

We conjecturethatthe reasonfor this is the following. Let
usassociatevith the jth blob thevalue

[
sj:Zaij,forlgjgN. (5)
=

For the parallel mode of datacollectionthe valuesof s; are
nearlythe samefor all the blobs. However, thisis notthe case
for cone-beandata. If we usethe datacollection geometry
of [7], the blob coeficientscloserto the helical sourcetrajec-
tory will have highers; valuesthantheblob coeficientsonthe
oppositesideof thetrajectoryand,ascanbeseerin (4), thisre-

sultsin someblob coeficientsbeingupdatedmorefrequently
thanothers,makingit harderfor theiterative algorithmto con-
vergeto anacceptableolution.

B. Block-ART

It is naturalto considerinsteadof the row-action algorithmic
schemd4) its block-iterative version,in which all themeasure-
mentstaken by a numberof pulsesof the X-ray sourceform a
block. A powerful theoryis developedfor thisin [8]. Let M be
the numberof blocks,Y; be the L-dimensionalvectorof those
measurement&hich form the ith block andlet A; be the cor-
respondingubmatrixof A (we assumehateachblock hasthe
samenumberof measurementsY.heoreml.3 of [8] stateshat
the following block-iterative algorithmhasgood corvergence
properties:

cO s arbitrary,
¢ = ¢ L ATS() (Yi _ Aic(n)) , (6)
n=0,1,..., i=nmodM+1,

where =™ is an L x L relaxationmatrix. This theory cov-
ers even fully-simultaneousalgorithmic schemegjust put all
the measurementiito a singleblock). Thereare alsogener
alizationsof the theory which allow the block sizesand the
measurement-allocation-to-blagko changeas the iterations
proceed.

A variation on sucha block-ART algorithmis to perform
component-dependenteightingin the updateof blob coefi-
cients. The essencef this approachis to introducein (6) a
secondN x N) relaxationmatrix A" in front of the AT. Then
we needto answetthefollowing: For whatsimple(in thesense
of computationallyeasily implementable)pairs of relaxation
matrices=(" andA™ canwe simultaneouslybtaindesirable
limiting convergencebehaior andgoodpracticalperformance
by the earlyiterates Examplesof the A" to bestudiedarethe
diagonalmatrix whose jth entry is the reciprocalof the s; of
(5) or, alternatvely, thereciprocalof a similar sumtakenover
only thosemeasurementiswhich arein the block usedin the
particulariterative step. A recentlyproposedsimultaneouse-
constructionalgorithmwhich usesj-dependentveighting ap-
pearsin [12], whereit is shovn that a certainchoiceof such
weighting leadsto substantialacceleratiorof the algorithm’s
initial corvergence.

Herewe definethe weightsto be usedin the updatesased
on thefollowing idea. Supposehatwe have takenthe projec-
tion dataof anobjectfor which all the blob coeficientsc; are
1. Then,it appeargesirableto have a uniform assignmenof
the blob coeficients after a single stepof a modified version
of (6), assuminghattheinitial assignmenbf the blob coefi-
cientsis zero.Assumingthatthe =(" is theidentity matrix, we
canachieve this aim by choosingA(™ to be a diagonalmatrix
whose jth entry is inverselyproportionalto the sumover all
linesin the block of theline integral throughthe jth blob mul-
tiplied by the sumof the line integralsthroughall the blobs.
Themathematicaéxpressiorfor thisis

N
(a{(i—l)L+I]j z a{(i—l)L+I]k> .
K=1

L

2

()



In orderfor this to work we have to ensurethat the value of

(7) is notzero. Thisiis likely to demandheforming of blocks
which correspondo morethanonepulseof the X-ray source,
sincetheraysforming a block shouldintersectall blobsin the
reconstructiorregion.

1. Results

Both ART (4) andtheblock-ART (describedy (6) and(7)) al-
gorithmswereusedto reconstruct modified3D Shepp-Logan
phantom[13] in which the valuesrangefrom 0.00to 2.00,us-
ing datacollectedfrom two helix turns, with 300 projections
taken per turn and 64 rows and 128 channelsper projection
(i.,e. | =2x300x 64x 128=4,915,200).The coneandfan
anglesof the cone-beanwere9.46° and21.00°, respectiely.
The reconstructed/olumesconsistedof a 95 x 95 x 191 blob
coeficientsarray(2) organizedon a bccgrid (see[4]) thatwas
interpolatedo a cubicgrid with 128 x 128x 128 voxels. Fig-
urel showvsa(x,2)-slice of thevolumereconstructedsingthe
standardART algorithm (a) andthe block-ART algorithm (b)
anda (y, 2)-slice usingthe the standardART algorithm(c) and
the block-ART algorithm (d). The grayscalewindow usedto
shaw thesliceswas[1.00,1.03].Bothalgorithmswereexecuted
for 17 cyclesusingw™ = 0.01 for thestandard\RT algorithm
and0.1 asarelaxationparamete(multiplying the identity ma-
trix =(M) for the block-ART algorithm. For the block-ART al-
gorithm,the measuredlatawasgroupednto 75 blocksformed
by 8 cone-beamgach. As one cansee,the visual quality of
thesereconstructionss similar, althoughthe blob-ART recon-
structionseemso producea moreuniform backgroungnside
the skull of the phantom.Thetime neededor bothreconstruc-
tions is similar sincethe block-ART algorithmonly carriesa
small overheadfor computingthe weightsfor eachparticular
(blob,block)pair. (This overheadcanbeeliminatedby precom-
putationandstorageof theweights.)

V. Discussion

We presentethereourfirst resultsontheuseof ART techniques
for thereconstructiorf helicalcone-beanCT data.Ourfuture
work will concentrateon how to optimize the algorithms, by
bothspeedingip theexecutionof asinglecycle andimproving
therateof corvergenceof thealgorithms,andthe evaluationof
thesealgotihmsandotherblock-ART variants.
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(a) (b)
(©) (d)
Figure 1: Slicesof reconstructedshepp-Logamphantomusing the standardART algorithm (a) and (c), and the block-ART

algorithm(b) and(d), shaved usingthe gray-scalavindow settingsof [1.00,1.03](images(a) and(b) shawv a (X, 2)-slice while
imageg(c) and(d) shaw a (y, 2)-slice). Both algorithmswereexecutedfor 17 cycles.






