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Light-tissue Interactions
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Scattering In Tissue
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proteins can be tagged with fluorescent
proteins

green fluorescent protein converts biue light (488nm) into green light
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Rules for Ray Tracing

Rule 1: Rays passing through the center of a lens are unaffected by the lens.

Rule2 : Rays that are parallel to the optical axis pass
before hitting a lens pass through the focal point
after the lens and vice versa.

Rule 3: Parallel rays (any angle to optical axis) pass
through the same point in the focal plane after
refraction and vice versa

http://measurebiology.org/wiki/Geometrical _optics_and_ray_tracing
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Zoom Lens



http://en.wikipedia.org/wiki/Image:Nikkor_28-200_zoom.jpg

Confocal Optical Microscope
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Cell Division

https://www.olympus-lifescience.com/en/microscope-
resource/moviegallery/confocal/rk13cherryh2b/
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Optical Biopsy
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Change in Phase to Change in Amp

Coherent & Incoherent Addition of Waves
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Interference of Coherent Light

; Movable mirror 2 I;(vy)=2%15(v,)[1+cos(2rALv,)]

1. (vs)=2%1(v5) 1+cos(2tALY,)

L(v3)=2%Iy(v;)[1+cos(2nALV,)]



Case of Partially Coherent Light




Limiting Case

For discrete light with different
Movable mirror 2 wavelength

For continuous spectra with spectral
density of S(v):

Fixed mirror 1

Photodetector



Michelson Interferometer
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*Optical path length difference:

*Phase difference: ¢=2nAL/A
* Detected Light Intensity:

I =1 +1, +2[L,.], cos(¢)

Constructive interference:
2nAL/A=2mnx

=mA

*Destructive interference:
2nAL/A=2m+1)x
AL=(m+1/2)\
m=0,1,2.3...



OCT Principle
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Eye Exam with OCT




Cardiac Study with OCT
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Light Diffusion




Monte-Carlo Simulation

An object is put as a finite element mesh with
heterogeneous properties. Photons are traced
according to light-tissue interactions.
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Simulated Mouse
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Shen HO, Wang G: A tetrahedron-based inhomogeneous Monte Carlo
optical simulator. Phys. Med. Biol. 55:947, 2010



Mean Free Path (MFP) &
Transport Mean Free Path (TMFP)
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Figure 1 | Simplified metrics of photon propagation in tissue.

(a,b) Schematic depiction of MFP and TMFP (a) and of photon
propagation (b). The scale in physical dimensions is indicative of an
average tissue with a reduced scattering coefficient of 10 cm~1. This
scale will vary depending on the tissue and the wavelength used.

http://www.nature.com/nmeth/journal/v7/n8/pdf/nmeth.1483.pdf


http://www.nature.com/nmeth/journal/v7/n8/pdf/nmeth.1483.pdf
http://www.nature.com/nmeth/journal/v7/n8/pdf/nmeth.1483.pdf

Diffuse Optical Spectroscopy (DOS)
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Diffuse Optical Tomography (DOT)

/

DOT

X. Intes, V. Ntziachristos, J. Culver, et al., Phys. Med. Biol., 47:N1 (1998)



DOT of Breast Cancer
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Dr. Brian Pogue, Dartmouth College



Temporal Gating
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Fluorescence Molecular
Tomography

Galvanometer pair

Emission 1CCD
=== hlter

.
Rotation stage

S

Fluorescent Protein Spectral Profiles

Excitation Spectra Emission Spectra

2100 < BFP ©100

Femtosecond s SGFP| 3
e < YFP =

laser g eor o R
w = 'S
B 40} T 40
8 o
§ 20f g 20
) <]
4 il = 0 Vi~ A -
300 400 500 600 700 400 500 600 700

Wavelength (Nanometers) Wavelength (Nanometers)



Fluorescence Molecular Tomography
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Imaging Agents:
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FMT Reconstruction
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Optical Molecular Tomography for
Regenerative Medicine (with Wake)

rF T Source Distributions
luorescence Tomogrpahy (100um 3D Resolution,
| (0:2.2) <15% Error)
A race
S5 M Qe
o <
A .
S Fluorescence View B
s> (50pm 2D Resolution)
L (D.1.2)
Optical Coherence Tomogrpahy /T\ [Diffuse Optical Tomography
(50uum 3D Resolution) e > (<10% Error)
(D.1.1&D.2.1) = A L (D.1.2&D.2.2)
A \ . A

[(Outer Surface)
—

Endothelial Cells .

Interface \

['(Inner Surface) N Engineered Vessel
g Segment

The goal is to develop a multi-probe multi-modal optical molecular
tomography system for visualization of bioengineered blood vessels in
bioreactors and after implantation into living animals.

Multi-Pls: Ge Wang & Shay Soker, NIH RO1/BRP HL098912, 02/10-11/14



Bioluminescence Tomography
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X-ray Optical Fusion

FMT-PCCT: Hybrid fluorescence molecular
tomography - X-ray phase-contrast CT

imaging of mouse models

Article (PDF Available) in IEEE Transactions on Medical Imaging 33(7) - March 2014 with 134 Reads
DOI: 10.1109/TMI.2014.2313405 - Source: PubMed

1st Pouyan Mohajerani 2nd Alexander Hipp
- | 23.82 - Helmholtz Zentrum Miinchen 2 i | 23.84 - Helmholtz-Zentrum Geesthacht

‘ 3rd Marian Willner & +7 Last Vasilis Ntziachristos

i1l 31.21 - Technische Universitat ...



Ex Vivo Study
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Photostimulated near-infrared persistent
uminescence as a new optical read-out

rom Cr3+-do ped LiGasOg

Feng Liu'?, Wuzhao Yan'?, Yen-Jun Chuang', Zipeng Zhen®, Jin Xie® & Zhengwei Pan'-

'College of Engineering, University of Geargia, Athens, GA 30602, USA, “Department of Physics and Astranomy, University of
Georgia, Athens, Ga 30602, LSA, ﬂDepnrhﬁean Chemistry, University of Geangia, Athens, GA 30602, USA,

In conventional photostimulable storage phosphors, the optical information written by x-ray or ultraviolet
irradiation is usually read out as a visible photostimulated luminescence (PSL) signal under the stimulation
of a low-energy light with appropriate wavelength. Unlike the transient PSL, here we report a new optical
read-out form, photostimulated persistent luminescence (PSPL) in the near-infrared (NIR), from a

Cr** -doped LiGasOg NIR persistent phosphor exhibiting a super-long NIR persistent lnminescence of more
than 1,000 h. Anintense PSPL signal peaking at 716 nm can be repeatedly obtained in a period of more than
1,000 h when an ultraviolet-light (250-360 nm) pre-irradiated LiGasOg:Cr'™ phosphor is repeatedly
stimulated with a visible light or a NIR light. The LiGa:0sCr™ phosphor has promising applications in
optical information storage, night-vision surveillance, and in vivo bio-imaging.



X-ray Luminescence CT

,_é Simultaneous Anatomical and Molecular Tomographic Imaging using X-Ray-Excitable Nanoparticles - Internet Explorer - | =} |1|
@" ,Dj +4+| @ Publications «Biomedical Imagin... | @ Simultaneous Anatomical an... | | I0% 5S¢ ol
X Find: Idelta Previous Mext | ./ Options - |
~
Prasantation Number 0110
Scientific Session 12: Movel Hybrid Molecular Imaging Technology
September 10, 2010 / 09:15-09:30 / Room: A
Simultaneous Anatomical and Molecular Tomographic Imaging using X-Ray-Excitable Nanoparticles
Guillem Pratx’, Colin M. Carpenter’. Conroy Sun’, Fadmanabha R. Ravilisetty”, Lei Xing’, *Radiation Oncology, Stanford University School of Medicine, Stanferd, CA, USA; *SRI International, Menlo Farl, CA, USA. Contsct e-mail:
prate@stanford. edu
®-ray luminescence computed tomegraphy (XLCT) is proposed as a new melecular imaging medzlity for imaging X-ray-excitable phosphorescant nancparticles three-dimeansionzlly, in smazll animals. Some of these nanc-sized particles can
emit near-infrared (NIR) light when excited with ¥-rays and be functicnalized to target specific bislogical processes in vive. XLCT enables anatomical images to be acquired simultaneoushy with malecular images via standard ¥-ray computed
tomography (CT). The imaging meachanism used in XLCT consists in irradiating the subject using a sequence of ¥-ray beams while sensitive photo-detectors measure the light diffusing out of the subject. For 2ach beam position, the
production of light is constrained to the narrow volume of the beam, hence, the collection of optical measuremeants forms parallel-beam projections. An XLCT systemn was simulated using Monte-Carla. Preliminary experimants weare also
conducted in phantoms using 2 50 kvP treatment X-ray genarator and an EM-CCD camera. Images were reconstructed using a maximum-likelihood iterative algorithm. From simulations, tracer uptake in 2 mm-diameter targets can be
detected and guantified with sub-picomalar sensitivity with lass than 1 ¢Gy of average radiation dose. Provided sufficient signal-to-neise ratio, the spatial resclution of the system can be made arbitrarily small by narrowing the beam
aperture. In particular, 1 mm uniform spatizl resclution was achieved for 2 1 mm-wide X-ray beam. Images reconstructed from experimental XLCT measurements showed good agreement with the simulation model. In particular, the
reconstructad signal was linear with phosphor concentration. Preliminary simulations and experiments show that XLCT is 2 feasible approach for imaging small animals or dadicated organs. With the next varsion of our experimental set-up,
wie expact improved spatizl resolution and malecular sensitivity.
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X-ray Micro-modulated
Luminescence Tomography

OptICS EXPRESS THE INTERNATIONAL ONLINE JOURNAL OF OPTICS

Editor: Andrew M. Weiner Vol. 22, Iss. 5 — Mar. 10, 2014 pp: 5§572-5580

Optics InfoBase > Optics Express > Volume 22 > |ssue 5 > Page 5572

« Show journal navigation

X-ray micro-modulated luminescence tomography (XMLT)

Wenxiang Cnng,1 Fenglin Liu,1’2 Chao Wang,1 and Ge Wang“

Optical Detector Array
[ - ]

Microfocus e
X-Ray Source Y

': X-R
C— = ::.. A
\

‘ B g O

b

|

4

Nanophosphors A




XMLT in Collaboration with GE
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X-ray Micro-modulated Luminescence Tomography (XMLT) uses focused x-ray
for nanophosphor excitation deeply into the neocortex and other tissue types.
The nanophosphors may be functionalized to have

resolution superior to puMRI, contrast comparable with optical imaging, and
performance beyond typical pCT.



Optogenetics

Activation Inhibition
NpHR Arch
(589 nm) (575 nm)

eNpHR2.0 Mac (470-500 nm)
ChETA (470 nm) (589 nm) eBR (560 nm)
SFO (470 or 542 nm) eNpHR3.0 GtR3 (472 nm)
VChR1 (535-589 nm)

Marina Corral

Optogenetic tools for modulating membrane volage potential.

http://www.nature.com/nmeth /journal/v8/n1/full/nmeth.f.323.html
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X-optogenetics
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Homework

1. Review this lecture to summary key ideas/points.
2. Transcribe the 1st part, 2"d part, or the last two parts of
this lecture.

3. If we make a smart phone send and receive light anyway
you want, what medical imaging applications could you
Imagine? "




