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Presentation Outline

• Motivation for kernel-based methods (kernel density 

estimation)

• Principal Component Analysis (PCA) and Kernel 

principal component analysis (KPCA)

• Partial Least Squares (PLS) and Kernel partial least 

squares (KPLS)

• Some ideas on how to integrate nonlinear projection-

based methods for network pruning and 

detecting/diagnosing anomalies.
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Motivation for Kernel-Based methods

• Let’s examine a very simple approach to motivate Cover’s theorem and 

the idea behind reproducing kernels:

• How can we estimate the cumulative distribution function of a random 

variable X using a set of n observations drawn from the distribution of 

X?

• Let’s try the following naïve estimator:
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Motivation for Kernel-Based methods

• OK, the n observations, if assumed to be drawn independently, can be 

used to formulate a total of n Bernoulli trials (like flipping a coin)

- two outcomes, the value can be larger or smaller than x ;

- the probability to be smaller then x (success) is equal to the

cumulative probability distribution function for x, i.e. F (x) ; and

- for the ith draw (drawing the ith value of the random variable X ), the

probability that xi is smaller than or equal to x is F (x) for 1  i  n.

• Under these assumptions, S (x) has a binomial distribution with n

degrees of freedom and the probability of success is F (x):
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Motivation for Kernel-Based methods

• OK, this implies that the naïve estimator is unbiased:

• This follows from simple asymptotics!

• We can develop this one step further by utilizing the fact that the 

Binomial distribution can be approximated by a normal distribution with 

a reasonable degree of accuracy, meaning a large enough sample 

size: np > 5 and n ( 1 – p ) > 5!  
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Motivation for Kernel-Based methods

• Let’s define a new random variable first:

• The above confidence interval is computed for a significance of 

=0.05!

• OK, let’s move on and convert this into an integral equation, one 

second…

Slide 6

 
   
    

 

 
   

    

   
    

               xFxnFxnFxxxFxnFxnF

xFxnF

xnFxx

xFxnF

xnFxx
xZ

N
xFxnF

xnFxS
xZ

i

i

i




















196.1#196.1

96.1
1

#
96.1

1

#

1,0
1



Dr. Uwe Kruger

Projection-Based Data Chemometrics and Deep Reconstruction

Troy,  November 19., 2017

Motivation for Kernel-Based methods
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Motivation for Kernel-Based methods

• So what have we got?

• All we said about the slightly less spiky Dirac delta function is that its 

integral must be equal to one, so how about defining it as follows:
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Kernel Density Estimation

• The function                is referred to as a kernel function and the 

derivative shows that, asymptotically, the estimate:

converges to the true probability density function for any value of x.  

The above estimator is defined as a kernel density estimator.

• Along the same lines, we can also develop an approach to develop nonlinear 

counterpart of data-driven chemometric modeling techniques, such as principal 

component analysis (PCA) and partial least squares (PLS).

• Essentially, an artificial neural network can be seen as a kernel-based nonlinear 

modeling technique, i.e. the neurons are, effectively, small kernels.

• Let’s start with PCA first, after some more discussions on kernels.
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Kernel Density Estimation

• Theoretically, kernel functions other than the Gaussian kernel:

can be considered if their area is equal to 1 and include the 

Epanechnikov, the triangular and the uniform kernel among others.

• Theoretically, the derivative showed that the shape of the kernel 

function does not influence the estimate in an asymptotic sense.

• Practically, however, the shape of the kernel function does influence 

the accuracy of the estimate.  This yields the following general form of 

the kernel density estimator: 
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Kernel Principal Component Analysis - Introduction

• Kernel PCA is a generic nonlinear extension to linear PCA (Kruger et 

al., 2008).

• Let’s look at some basics before we go into the kernel stuff.

 singular value decomposition

• Next, let’s define the following two matrices:
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Kernel Principal Component Analysis - Introduction

• Let’s see how we can determine the unknown source variables (up to a 

similarity transformation) – which are the principal components:

• Let’s make the relationship between the source variables and the 

measured variables nonlinear, i.e.:

which we assume to be bijective!
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Kernel Principal Component Analysis - Introduction

• Let’s define the Gram matrix
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Kernel Principal Component Analysis - Introduction

• Let’s repeat the “trick” we did when estimating the probability density 

function using the kernel density estimator using kernels:
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Kernel Principal Component Analysis - Introduction

• Let’s finalize the definition of the Gram matrix:

• Next, we carry out the eigendecomposition of the Gram matrix:

• In a similar fashion to PCA, we can now determine the principal 

components:
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Kernel Principal Component Analysis - Introduction

• Asymptotically, n → , the shape of the basic kernel function is not 

important.

• Theoretically, and this follows from the properties of reproducing 

kernels, any function can be constructed in the feature space that 

maps the nonlinear surface in the data space to become a plane 

(subspace) in the feature space.

• The projection in the feature space then yields linear principal 

components in the feature space that are related to the source 

variables in the original variable space – connected through the 

following mappings:
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Partial Least Squares – Introduction

• Let’s examine the geometric framework that underpins the partial least 

squares concept: orthogonally projecting the data points onto 

directions for the predictor space:

cos 𝛼 =
𝒙𝑇𝒘

𝒙 𝒘

with 𝒘 = 1, we get                              

cos 𝛼 𝒙 = 𝒙𝑇𝒘 = 𝑡

and the response space:

cos 𝛽 𝒚 = 𝒚𝑇𝒗 = 𝑢

if 𝒗 = 1
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Partial Least Squares – Introduction

• Let’s examine the random vectors – these can be of a considerable 

dimension – X and Y describing the predictor and response sets that are 

related as follows:

𝒀 = 𝑩𝑿 + 𝑬 - E being a random vector describing uncertainty

• We could use ordinary least squares to determine the parameter matrix B: 

𝑩 = 𝑺𝑌𝑋𝑺𝑋𝑋
−1

• The problem is that if X has a very large dimension, the inverse of the 

covariance matrix SXX may not exist or is badly conditioned!

• Here is where PLS comes in!  Using the projections we discussed before:

𝑇 = 𝑿𝑇𝒘 and 𝑈 = 𝒀𝑇𝒗

• Now, we select the random variables T and U such that they maximize 

their covariance!
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Partial Least Squares – Introduction

• This yields the following objective function:

𝐽 = 𝐸 𝑇𝑈 − 𝜆1 𝒘𝑇𝒘− 1 − 𝜆2 𝒗𝑇𝒗 − 1

𝐽 = 𝒘𝑇𝐸 𝑿𝒀𝑇 𝒗 − 𝜆1 𝒘𝑇𝒘− 1 − 𝜆2 𝒗𝑇𝒗 − 1

𝐽 = 𝒘𝑇𝑺𝑋𝑌𝒗 − 𝜆1 𝒘𝑇𝒘− 1 − 𝜆2 𝒗𝑇𝒗 − 1
𝜕𝐽

𝜕𝒘
= 𝑺𝑋𝑌𝒗 − 2𝜆1𝒘 = 𝟎

𝜕𝐽

𝜕𝒗
= 𝑺𝑌𝑋𝒘− 2𝜆2𝒗 = 𝟎

𝑺𝑋𝑌𝑺𝑌𝑋𝒘 = 4𝜆1𝜆2𝒘

𝑺𝑌𝑋𝑺𝑋𝑌𝒗 = 4𝜆1𝜆2𝒗

• So, we now have the direction vectors w and v in both spaces!

• That also means that we have the random variables T and U!

• Whilst X predicts Y, PLS utilizes T – instead of X – to predict Y!
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Partial Least Squares – Introduction

• With 𝑇 = 𝑿𝑇𝒘, we get:

𝑭 = 𝑿 − 𝑻𝒑 and 𝑬 = 𝒀 − 𝑻𝒒 – these being the residual vectors for X

and Y, respectively.

• The parameter vectors p and q can be obtained by solving two least 

squares regression problems – minimizing the length of the residual 

vectors:

𝒑 =
𝐸 𝑿𝑇

𝐸 𝑇2
and 𝒒 =

𝐸 𝒀𝑇

𝐸 𝑇2

• After that, the PLS algorithm can be repeated using the residual 

vectors F and E instead of the original random vectors X and Y.

• This gives rise to the following iterative algorithm, which is referred to 

as the standard PLS algorithm and detailed on the next slide.  This 

algorithm was first published by Herman Wold in 1966.
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Partial Least Squares – Algorithm

• Let X and Y be two data matrices that store a total of n data points drawn from the 

random vectors X and Y, respectively:

• The first step is to normalize the data matrices, i.e. the observations in each 

column are mean centered and scaled to have a unit variance:
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Partial Least Squares – Algorithm

• Next, define the covariance and cross-covariance matrices:

• Setup the PLS iteration              and determining the regression vectors     
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Kernel Partial Least Squares – Algorithm

• The regression matrix can now be estimated as follows:

• To establish a nonlinear extension of the standard PLS algorithm, let’s 

look at the standard algorithm again:

• We can “kernelize” the above Gram matrix by using the following 

nonlinear transformation involving the random vectors X, Y and E:

• Based on the data matrix X, we get:
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Kernel Partial Least Squares – Algorithm

• Using the Gram matrix based on 𝝍 𝐗0 , we can compute the projection 

vector v as follows:

• Once we have v, it is easy to compute the vector u:

• The next step is to compute the vector t.  For linear PLS, we can derive 

the following relationship:
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Kernel Partial Least Squares – Algorithm

• Instead of the linear Gram matrix 𝐗0𝐗𝟎
𝐓, we can also use the nonlinear 

Gram matrix 𝚽𝑋 𝐗0, 𝐗0 , which gives rise to:

• To address the scaling problem, as we cannot compute the projection 

vector w, we can scale the vector t to unit length:

• Now, we can deflate the Gram matrix, 𝐆0𝐆0
𝑇 = 𝚽𝑋 𝐗0, 𝐗0 :
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Kernel Partial Least Squares – Algorithm

and the response matrix 𝐘0:

• The last step is to compute the regression matrix.  Again, let’s look 

again at the linear PLS algorithm first:

• Using this regression matrix for predicting a new observation yields:
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Kernel Partial Least Squares – Algorithm

• Finally, replacing the linear Gram matrix and vector by there nonlinear 

counterparts gives rise to:

• Let’s put this all together and define the KPLS algorithm.

• Besides the construction of the nonlinear transformation, and with it its 

Gram matrix, the rest of the algorithm is related to the linear PLS 

algorithm.

• Compared to artificial neural networks, which have many network 

weights, the “only” parameter that needs to be specified is the kernel 

parameter.  The remaining parameter are obtained by a linear 

regression problem an solved using the robust PLS algorithm!
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How could chemometric techniques assist in dealing 
with very large network architechtures? 

• Disclaimer: KPLS is not a substitute to deep learning architectures!

• KPLS does run into problems if the number of data points increase, 

say beyond 10,000 (remember the size of the Gram matrix is equal to 

the number of data points squared)

• A KPLS model has the potential to outperforms competitive artificial 

neural network models when the number of variables x or y are larger 

and/or the number of data points is small.

• To see how KPCA and KPLS could be useful tools, let’s examine the 

structure of large network topologies on the next slide in more detail
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How could chemometric techniques assist in dealing 
with very large network architechtures? 

• Starting from a “small” (trained) network:

1. how do we know that this neuron is important or could be discarded if it contributes negligibly to 

the accuracy of the network prediction – e.g. for specific tasks (set of lung images)? 

2. secondly, how can we statistically examine significant differences in the individual layers/layer 

combinations if we have two sets of images (one set that is labeled normal, whilst the other set 

is labeled as containing anomalies)?
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Abnormality Detection (Basis Multivariate Approach) 

• Hotelling’s T2 Statistic •Q Statistic
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Application to Fault Diagnosis (Internal Combustion Engine) 

• Analysis of data from a Volkswagen 1.9L TDI diesel engine.

• Various fault conditions were recorded and diagnosed.

DYNAMOMETER

air in
exhaust

manifold plenum chamber
Fault 2:

intercooler

blockage

(process)
Fault 1:

injector pump

fuel meter

(sensor)

inlet manifold

pressure

inlet manifold

temperature

turbine inlet pressure
turbine inlet temperature

turbine exit

pressure

compressor

(turbocharger)
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Application to Fault Diagnosis (Internal Combustion Engine) 

Variables analysed                                         Modelling results

Principal

Component
Variance Captured (%) Variance Total (%)

1 79.5998 79.5998

2 16.4492 96.0490

3 2.4169 98.4659

4 1.0745 99.5404

5 0.4010 99.9414

6 0.0586 100.000

Number of 

Bottleneck Nodes
Variance Captured (%) Note

1 97.8160 Important variation

2 99.4212

3 99.8336

4 99.8725 Negligible

5 99.9401

6 99.9414

No Engine Variable Unit Note

1 Fuel Flow kg/h

output

2 Air Flow kg/h

3 Inlet Manifold Pressure Bar

4 Inlet Manifold Temperature ◦C

5 Turbine Inlet Pressure Bar

6 Turbine Inlet Temperature ◦C

RPM 1500 2500 3500 4500

Pedal 

Position

30% 49% 57% 62%

40% 59% 64% 65%

54% 74% 74% 76%

62% 78% 80% 83%

100% 100% 100% 100%



Dr. Uwe Kruger

Projection-Based Data Chemometrics and Deep Reconstruction

Troy,  November 19., 2017
Slide 33

Application to Fault Diagnosis (Internal Combustion Engine) 

Air leak of 2mm in the manifold plenum chamber
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Application to Fault Diagnosis (Internal Combustion Engine) 

• An incipient hole in the air intake system

could be successfully detected.

• However, a detailed diagnosis as to which

recorded engine variable is affected by

this event could not be obtained.

• Traditional techniques fail to detect or

diagnose this event.

• Model-based fault detection and

diagnosis is expensive, whilst data-

driven techniques are a viable alternative

that are cost-effective.
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Application to Fault Diagnosis (Internal Combustion Engine) 

Air leak of 6mm in the manifold plenum chamber
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Application to Fault Diagnosis (Internal Combustion Engine) 

(i)

The fault could clearly 

be detected;

(ii)

The diagnosis provides 

the engine 

management system 

with sufficient 

information to trace this 

event to an air leak
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•A bond will absorb radiation of a frequency similar to its vibration(s)

•normal vibration •vibration having absorbed 

energy

Application to Chemistry (RAMAN Spectroscopy) 
Variable Selection
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Application to Chemistry (RAMAN Spectroscopy) 
Variable Selection


