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Presentation Outline

« Motivation for kernel-based methods (kernel density
estimation)

* Principal Component Analysis (PCA) and Kernel
principal component analysis (KPCA)

« Partial Least Squares (PLS) and Kernel partial least
squares (KPLS)

« Some ideas on how to integrate nonlinear projection-
based methods for network pruning and
detecting/diagnosing anomalies.
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Motivation for Kernel-Based methods

« Let's examine a very simple approach to motivate Cover’s theorem and
the idea behind reproducing kernels:

« How can we estimate the cumulative distribution function of a random
variable X'using a set of n observations drawn from the distribution of
X? :

 Let’s try the following naive estimator: & 0
E 06
. #x. <x S(X 2 -
F(X): : — ( ) % -
n n £ 02

Q

(-
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Motivation for Kernel-Based methods

« OK, the n observations, if assumed to be drawn independently, can be
used to formulate a total of » Bernoulli trials (like flipping a coin)
- two outcomes, the value can be larger or smaller than x;
- the probability to be smaller then x (success) is equal to the
cumulative probability distribution function for x, i.e. F(x) ; and
- for the ith draw (drawing the ith value of the random variable X), the
probability that x; is smaller than or equal to xis F(x) for1 < i< n.

« Under these assumptions, .S (x) has a binomial distribution with n
degrees of freedom and the probability of success is F(x):

S(x)~Bin, p=F(x)} E{S(x)}=np = nF(x)
f(x) = (ijX(l— oy VIS(x)}=np(L-p)=nF (x)i-F(x))

Dr. Uwe Kruger
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Motivation for Kernel-Based methods

« OK, this implies that the naive estimator is unbiased:

£ {f )= 0N _1FC)_ gy

1 (o)) = VSO0 (= F(9) _ F(Ja=F(x)
jim V {F (x){— 0

Nn—oo

lim F(x)=lim F(x)

N—o0 N—o0

* This follows from simple asymptotics!

« We can develop this one step further by utilizing the fact that the
Binomial distribution can be approximated by a normal distribution with
a reasonable degree of accuracy, meaning a large enough sample
size:np>5and n(1-p)>5!
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Motivation for Kernel-Based methods

 Let's define a new random variable first:

o S()-nF(x
“00= R (el 7 N
) (#x. < x)—nF(x
“ )
#X <X
R
nF (x)-1.96./nF (x1— F(x)) < (#x, <x)<nF(x)+1.96,/nF(x)1-F(x))
« The above confidence interval is computed for a significance of
o=0.05!

« OK, let’'s move on and convert this into an integral equation, one
second...

-1.96 <

Dr. Uwe Kruger
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Motivation for Kernel-Based methods

nF (x)—1.96,/nF (x) jZag x.) F(x)+1.96/nF (x)1— F(x))
Ia@—xod&{é'"-;éii

F(x)—1.96\/ F(X)( j Za £—x.) )+1.96\/ F(xJL-F(x)

n

—o i=1

F(x)—1.96\/ j Z K(g-x) §£F(x)+1.96\/F(X)(1_F(X))

n

—oo 1=l sllghtlyless 'spiky"
Dirac deltafunction

(e ”X”leX,><f<x>+1.%dU“”“n o

i=1

f(x)-1.96

d x d x
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Motivation for Kernel-Based methods

So what have we got?

P | [FREFE)

f(x)-1.96 . <= K(x—x )< f(x)+1.96 ™

{ [FOOR-FO)
im £ (x)+1.96 (\/ - ]_Liinoof(x)+ \%d( F(Xz(lx_F(X))L f(x)
l'inwnZK X—X )= f(x)

All we said about the slightly less spiky Dirac delta function is that its
Integral must be equal to one, so how about defining it as follows:

K(x—xi):Le%(%j = lim K(x—x)— 5(x—x)

2ro o—0
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Kernel Density Estimation

»  The function K(x —x, ) is referred to as a kernel function and the
derivative shows that, asymptotically, the estimate:

converges to the true probability density function for any value of x.
The above estimator is defined as a kernel density estimator.

» Along the same lines, we can also develop an approach to develop nonlinear
counterpart of data-driven chemometric modeling technigues, such as principal
component analysis (PCA) and partial least squares (PLS).

« Essentially, an artificial neural network can be seen as a kernel-based nonlinear
modeling technique, i.e. the neurons are, effectively, small kernels.

 Let’s start with PCA first, after some more discussions on kernels.

Dr. Uwe Kruger
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Kernel Density Estimation

« Theoretically, kernel functions other than the Gaussian kernel:

K(x—x )= Le_%(%j

2ro

can be considered if their area is equal to 1 and include the
Epanechnikov, the triangular and the uniform kernel among others.

« Theoretically, the derivative showed that the shape of the kernel
function does not influence the estimate in an asymptotic sense.

« Practically, however, the shape of the kernel function does influence
the accuracy of the estimate. This yields the following general form of
the kernel density estimator:

1 K(X_X‘j, K(X_Xij:%ez(hj, h — bandwidth
nh< ([ h h 2

Dr. Uwe Kruger
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Kernel Principal Component Analysis - Introduction

« Kernel PCA is a generic nonlinear extension to linear PCA (Kruger et
al., 2008).

« Let's look at some basics before we go into the kernel stuff.

z=As dim{z}>dim{s} E{z}=AE{s}=0
T] [oT]
KRk

Z=|%2|=|% |AT=ULPT = singular value decomposition
2] s

* Next, let’s define the following two matrices:
X, =17"7=P]2 12" — data covariance matrix and its eigendecom position
®,(2,2)=2Z" =U[2JU" - Gram matrix and its eigendecom position

Dr. Uwe Kruger
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Kernel Principal Component Analysis - Introduction

« Let's see how we can determine the unknown source variables (up to a
similarity transformation) — which are the principal components:

S2 IAT=ULPT =SocUL=T,AxcP

t=P'z=L"'U"Z=L"U"®,(Z,z)gventhat Z=ULPT =P" =L'U"Z

« Let’'s make the relationship between the source variables and the
measured variables nonlinear, i.e.:

;
2=0(s) f=wy(z) t=P'f, F=|" ,(22) which we assume to be bijective!

Dr. Uwe Kruger
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Kernel Principal Component Analysis - Introduction

o Let's define the Gram matrix

T T T
©,(z,2)= [1-211"]  FEL -]
————" {efined as the kernel matrix,> N
incorporating mean incorporating mean
Centering Centerlng

v (2 )w(z) vz w(z) o v (2 )w(z,)
FET = | V(2 w(@) vz )wlz,) \VT(ZZ.)\V(Zn) _K(z,2)
vz w(z) v 2 w(z) v e,)

k, k, - Kk
K(Zz)=| ke ke o K
K.k, - k.

nn

n

2n

i Dr. Uwe Kruger =
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Kernel Principal Component Analysis - Introduction

« Let’s repeat the “trick” we did when estimating the probability density
function using the kernel density estimator using kernels:

[ 2l
ky = (2 )wlz, )= 7 e{ -

1 2rno
_l[nzl—zzn}z _l[nzl—znn 2
2 o 2 o
1 e ... @
2
_5(”22_21” _%LHZZ_Zn”
— 1
K(Z’Z)_ 2o € .O- 1 : e °
_%(nzn—zlnf _%(nzn—zzn]z
e ¢ e o ... 1 |
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Kernel Principal Component Analysis - Introduction

« Let’s finalize the definition of the Gram matrix:
D,(Z,2)=K(Z,2)-1K(Z,Z1" -111"K(Z,Z)+ L 11" K(Z, Zn 1"
* Next, we carry out the eigendecomposition of the Gram matrix:
®, (Z,Z)=ULU’

* In a similar fashion to PCA, we can now determine the principal

components:
t=LU 1211 Fly(2)- ¥ |=  AT(k(Z,2)-1K(zZ,Z))
) ATT ’ %::1 likea neur;I network, thisisa vaeightedsum of basijsﬁmctionS

t=A"(k(z,2)-k)

Dr. Uwe Kruger
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Kernel Principal Component Analysis - Introduction

« Asymptotically, n — o, the shape of the basic kernel function is not
Important.

« Theoretically, and this follows from the properties of reproducing
kernels, any function can be constructed in the feature space that
maps the nonlinear surface in the data space to become a plane
(subspace) in the feature space.

« The projection in the feature space then yields linear principal
components in the feature space that are related to the source
variables in the original variable space — connected through the
following mappings:

z=0(s) f=wy(z) t=AT(f-f) z=6(t)

Dr. Uwe Kruger
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Partial Least Squares — Introduction

« Let's examine the geometric framework that underpins the partial least
squares concept: orthogonally projecting the data points onto
directions for the predictor space:

xTW
w - cosla) =
« with |lw|| = 1, we get
t cos(a)||x|| = xTw =t
a

and the response space:

cos(Blyll = y"™v =u
if lv]| =1

Dr. Uwe Kruger
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Partial Least Squares — Introduction

 Let's examine the random vectors — these can be of a considerable
dimension — X and Y describing the predictor and response sets that are
related as follows:

Y = BX + E - E being a random vector describing uncertainty

 We could use ordinary least squares to determine the parameter matrix B:
B = SYXS)_()1(

« The problem is that if X has a very large dimension, the inverse of the
covariance matrix Sy, may not exist or is badly conditioned!

 Here is where PLS comes in! Using the projections we discussed before:
T=X"wand U =YTv

* Now, we select the random variables T and U such that they maximize
their covariance!

Dr. Uwe Kruger
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Partial Least Squares — Introduction

This yields the following objective function:

] =E{TU} - A (ww—-1)—-2A,(vTv-1)
J=w'E(XYT}lv -2, (w'w—-1) - 21,(wTv-1)
J=wiSywv—-—2,(Www-1)—21,@wv-1)

d]

g_W = Sva_ 2/11W =0
a]

50 — SYXW 2/1217 - O

SyySyxw = 44,1, w

SyxSyyV = 4114,V

So, we now have the direction vectors w and v in both spaces!
That also means that we have the random variables T and U!
Whilst X predicts Y, PLS utilizes T — instead of X — to predict Y!

Dr. Uwe Kruger
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Partial Least Squares — Introduction

With T = XTw, we get:
F=X—-Tpand E =Y — Tq — these being the residual vectors for X
and Y, respectively.

« The parameter vectors p and q can be obtained by solving two least
sguares regression problems — minimizing the length of the residual

VECtOFS'
_ E{XT __ E{YT}
~ E{T%} a nd q ~ E{T?}

« After that, the PLS algorithm can be repeated using the residual
vectors F and E instead of the original random vectors X and Y.

« This gives rise to the following iterative algorithm, which is referred to
as the standard PLS algorithm and detailed on the next slide. This
algorithm was first published by Herman Wold in 1966.

Dr. Uwe Kruger
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Partial Least Squares — Algorithm

Let X and Y be two data matrices that store a total of n data points drawn from the
random vectors X and Y, respectively:

Xp X o Xy Yiu Y2 o Yin
X=|%a1 X2 0 Xon | y=|Ya Y ot Yon
X X2 7 XN Yoo Y2 0 Y

The first step is to normalize the data matrices, i.e. the observations in each

column are mean centered and scaled to have a unit variance:
Sample meanwvecto rs  :Xx=1X"1

y=1Y'1
Sample variance vectors :cf( = —L-diag ([X —1x' ]T [X ~1x' ])
o2 = 2 diag [v — 157 [ [y ~1x7 )

Normalizin g both matrices : X, = [X—l)‘(T Idiag (csf( )]% Y, = [Y —1y’ Idiag (63 )]%

Dr. Uwe Kruger
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Partial Least Squares — Algorithm

 Next, define the covariance and cross-covariance matrices:

Sample covariance matrix S0 =L XIX,, MO =(n-1)s'%)
Sample cross-covariancematrix: S = L XTY,, M =(n-1)s¥)
. %e_tuia the PLS iteration and determlnlng the regression vectors
r=1m Wi Woi
¢ =100; . =MEw, /W MW, )
w, = MED(1)/norm (MED(,2)); a  =MEw/ (W MW, )
while & <1e-10 X, =X =X wp;;
\Y =M$;<1)W0; Y, =Yi—1_x(i_1)WiCIiT;
= v/norm(v); MO =XTX;:
w =My MY =XTY,;
w, =w/norm (w); P, i) =p;
g =norm(w, —w, ), Qi) =q;;
Wo =W, W(,i)=w;;
end end

_ Dr. Uwe Kruger
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Kernel Partial Least Squares — Algorithm

The regression matrix can now be estimated as follows:
B=QW'P['W

To establish a nonlinear extension of the standard PLS algorithm, let's
look at the standard algorithm again:

T T
Av=Y, XX, Y,V
H/_J
This isa Gram matrix

We can “kernelize” the above Gram matrix by using the following
nonlinear transformation involving the random vectors X, Y and E:

G=y(X) Y=BG+E

Based on the data matrix X, we get:

G=vy(X,) Y,=G,B"+E

Dr. Uwe Kruger
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Kernel Partial Least Squares — Algorithm

« Using the Gram matrix based on ¥ (X,), we can compute the projection
vector v as follows:

=Yy [I-3117[GGT[I-2117 | Y,v

Thisis®, (Xy,X,), theGram matrixfor v(X,)

 Once we have v, it is easy to compute the vector u:
u=Y,Vv

« The next step is to compute the vector t. For linear PLS, we can derive
the following relationship:

t=XWw, woM,Vv=X Y,V
——

toc X, XU

Dr. Uwe Kruger
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Kernel Partial Least Squares — Algorithm

. Instead of the linear Gram matrix X,X3, we can also use the nonlinear
Gram matrix ®x (X, X,), which gives rise to:

t oc ®(X,, X,
« To address the scaling problem, as we cannot compute the projection
vector w, we can scale the vector t to unit length:

t =t/norm (t)

« Now, we can deflate the Gram matrix, G,G. = ®5x(X,, Xo):

Gi :Gi—l

_ti—lp-ir—l — Gi—l _ti—l

t-'I-l -1 T
== || -t. .t :
t;r_lti_l [ -1%1-1 -1

1

GiGiT = [I _ti—ltiT—l i—1GiT—1[I _ti—ltiT—l

Slide 25
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Kernel Partial Least Squares — Algorithm

and the response matrix Yy:

Y=Y, _ti—lq:-—l =Y, -t =

— [l —ti_lt-ir_l i—1

 The last step is to compute the rlegression matrix. Again, let’'s look
again at the linear PLS algorithm first:

B =W[P'W['Q" Q=Y!T[T'T]" P=XIT[T'T]" WX U
87 = XIU[T T T X o] [Ty,
B" = XIU[T™X, XU TTY,

« Using this regression matrix for predicting a new observation yields:

gr =xIBT =x) XTU[T"X XIU['TTY,

_ Dr. Uwe Kruger ST
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Kernel Partial Least Squares — Algorithm

« Finally, replacing the linear Gram matrix and vector by there nonlinear
counterparts gives rise to:

g =BW(X,)= Y TIUTH(X )W (X, )T] U (X, (%)

« Let’s put this all together and define the KPLS algorithm.

« Besides the construction of the nonlinear transformation, and with it its
Gram matrix, the rest of the algorithm is related to the linear PLS
algorithm.

« Compared to artificial neural networks, which have many network
weights, the “only” parameter that needs to be specified is the kernel
parameter. The remaining parameter are obtained by a linear
regression problem an solved using the robust PLS algorithm!

Dr. Uwe Kruger
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How could chemometric techniques assist in dealing

with very large network architechtures?

« Disclaimer: KPLS is not a substitute to deep learning architectures!

« KPLS does run into problems if the number of data points increase,
say beyond 10,000 (remember the size of the Gram matrix is equal to
the number of data points squared)

A KPLS model has the potential to outperforms competitive artificial
neural network models when the number of variables x or y are larger
and/or the number of data points is small.

 To see how KPCA and KPLS could be useful tools, let's examine the
structure of large network topologies on the next slide in more detall

Dr. Uwe Kruger
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How could chemometric techniques assist in dealing

with very large network architechtures?

« Starting from a “small” (trained) network:

hidden layer 1  hidden layer 2 hidden layer 3
input layer

1. how do we know that this neuron is important or could be discarded if it contributes negligibly to

the accuracy of the network prediction — e.g. for specific tasks (set of lung images)?

2. secondly, how can we statistically examine significant differences in the individual layers/layer
combinations if we have two sets of images (one set that is labeled normal, whilst the other set

is labeled as containing anomalies)?

L2

Dr. Uwe Kruger %
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Abnormality Detection (Basis Multivariate Approach)

* Hotelling’s T2 Statistic * () Statistic
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Application to Fault Diagnosis (Internal Combustion Engine)

Analysis of data from a Volkswagen 1.9L TDI diesel engine.

Various fault conditions were recorded and diagnosed.

inlet manifold inlet manifol
é pressure temperature
Fault 2: < v_ v
| intercooler manifold plenum chamber
blockage
(process)
Fault 1:
injector pump
/\ fuel meter
DYNAMOMETER || (sensor)
\v
< turbine inlet pressure
-t turbine inlet temperature
air in { % \
—_— | : I ———» exhaust
compressor turbine exit
(turbocharger) pressure
Dr. Uwe Kruger £
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Application to Fault Diagnosis (Internal Combustion Engine)

Variables analysed Modelling results
No Engine Variable Unit Note CPrlnC|paI Variance Captured (%) | Variance Total (%)
omponent
1 Fuel Flow kg/h
2 | AirFlow kg/h 1 79.5998 79.5998
3 | Inlet Manifold Pressure Bar 2 16.4492 96.0490
4 | Inlet Manifold Temperature "C output 3 2.4169 98.4659
4 1.0745 99.5404
5 Turbine Inlet Pressure Bar 5 0.4010 99.9414
6 Turbine Inlet Temperature °’C 6 0.0586 100.000
RPM :
1500 2500 3500 4500 Botﬁ::;tgir l\(l)(l;des Variance Captured (%) e
30% 49% S51% 62%
40% 59% 64% 65% 1 97.8160 Important variation
P'Z;‘iﬁ)'n 549 74% 74% 76% 2 99.4212
62% 78% 80% 83% 3 99.8336
100% 100% 100% 100% 4 99.8725 Negligible
5 99.9401
6 99.9414

Dr. Uwe Kruger
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Application to Fault Diagnosis (Internal Combustion Engine)

Air leak of 2mm in the manifold plenum chamber

Air
Flow
[ke/h]

N
S

Inlet
Pressure
[bar]

Inlet
Temp.

[°C]

nwaa SS9 °
(=N e B e N A

Manifold Maifold

Turbine
Inlet
Pressure
[bar]
(=1
O W =

600 l

! ! | | | | | | | | |
100 200 300 400 500 600 700 800 900 1000 1100 1200
Sample Number
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Application to Fault Diagnosis (Internal Combustion Engine)

@)
« Anincipient hole in the air intake system
could be successfully detected.

Fault-Free Data

 However, a detailed diagnosis as to which

2mm Air
10'F Leak in
Manifold
Plenum
Chember

T Value (log. scale)

recorded engine variable is affected by

this event could not be obtained.

« Traditional technigues fail to detect or ﬁb)n

—_
=
)
T

diagnose this event.

* Model-based fault detection and
diagnosis is expensive, whilst data-

—_
=
S
T

2mm Air
Leak in

Manifold
Plenum

Fault-Free Data Chember

1(;00 20‘00 30‘00 4000 5000 6000 70‘00
Sample Number

Q-Resisual (log. scale)

driven techniques are a viable alternative

—_
o,
&
T

that are cost-effective.
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Application to Fault Diagnosis (Internal Combustion Engine)

Air leak of 6mm in the manifold plenum chamber

Inlet Inlet

Manifold Manifold

Turbine

Inlet

Turbine

Inlet

Flow
[ke/h]

Fuel

[kg/h]

Air
Flow

[bar]

Temp. Pressure
[°C]
8 o

—Q
=)

[bar]

Pressure

[
[\

800

Temp.
[°C]

~

S
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Application to Fault Diagnosis (Internal Combustion Engine)

(I) 10 @ 10' ¢ (bzumw
The fault could clearly =~ o
'§ ol § Impact of 6mm Air Leak
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S 10F =)
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| g
. . . ~ ~10°t
information to trace this >~ | E
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o
1 10*F
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Application to Chemistry (RAMAN Spectroscopy)
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Variable Selection
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