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Energy-integrating Detectors (EIDs)

• Mature technology in all current x-ray scanners 

• Energy integration over the entire x-ray spectrum



Drawbacks of EIDs

• Energy-dependent information lost 
 –  Linear attenuation not tissue-type sensitive  
• Data quality degenerated due to the dark current 

(electric/Swank noise) 
 – Low SNR 
• Low-energy photons under weighted 
 – Poor contrast, beam-hardening



Photon-counting Detectors (PCDs)

• Voltage cross the threshold counted, 
individually and energy-sensitively 

• Multiple energy windows spanning the spectral 
dimension for CT imaging



Advantages of PCDs

• Spectrally unique contrast 
 – K-edge and fluorescence imaging, 
  beam-hardening avoidance 
• Low radiation dose 
 – No electronic noise, 
  balanced photon weights, improved SNR 
• High spatial resolution 
 – Desirable for radiomics



PCD Data Degradation

• Pulse Pileup Effect (PPE) 

• Charge sharing 

• K-escape x-rays 

• Compton scattering



Pulse Pileup Effect (PPE)

Missed Counts



Pulse Pileup Effect (PPE)

Distorted Energy



Pulse Pileup Effect (PPE)

• PCDs degrade in the performance of detection tasks 
when the count rate exceeds 20% of the maximum 
rate 

• Current compensation/calibration methods are not 
optimal and difficult to extend for different 
applications 

 – Model must be accurate to 
  describe the detection process 
 – Optimization must be specific to 
  address intended tasks 
   such as material decomposition or 
    contrast estimation



NN-based Trigger Threshold Correction

Distorted Measurement, DLR = 23.21%
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Distorted Measurement, DLR = 4.07%
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Distorted Measurement, DLR = 56.03%
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Trigger Threshold

• X-ray tube energy: 120 KeV 

• Normal threshold: < 120 KeV 

• Tigger threshold: > 120 KeV 

Signal strength over the trigger threshold 
indicates whether PPE occurs and how severe it is



NN-based Correction for PPE

Normal Thresholds

Trigger Thresholds

Distorted Measurement Corrected Measurement

NN
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Monte-Carlo Simulation

• X-ray spectrum 
– TASMICS 

• 43 Combinations of 
Attenuators 
– Water, Bone, Blood w. 20% Gd 
– Thickness T = {20, 30} cm 
– Bone: T(bone) = {0, 1, 3, 5} cm 
– 20% Gd: T(Gd) = [0:4:20] cm 
– T(water) = T - T(bone) - T(Gd)
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Monte-Carlo Simulation

Training and Testing Datasets 
• 1,000 measurements for each attenuator 
• Dataset 1: 

– 36 attenuators 
– Training, validation, testing = 60%, 20%, 20% 

• Dataset 2: 
 – 7 attenuators



• Deadtime Loss Ratio (DLR) 

Paralyzable detector:  

Nonparalyzable detector:  

• Coefficient of Variation (COV)

Monte-Carlo Simulation



• Neural Network Model 

Fully-connected NN with 1 hidden layer 

512 hidden units 

Dropout and L2 regularizer 

• Unbiased Estimator

Monte-Carlo Simulation
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Numerical Results

• Unipolar Pulse & Paralyzable Detector
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Numerical Results

• Bipolar Pulse & Paralyzable Detector
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Numerical Results

• Unipolar Pulse & Nonparalyzable Detector
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Future Plan for PPE Correction

• Systematic Simulation Study 
• Phantom Experiments 
• Preclinical Testing 

How to Collect Unbiased Data? 
– Perform realistic simulation with 
professional software tools 
– Reduce the incident flux for PPE-free 
data via time integration



Future Plan for CS Correction

Charge Sharing: one photon is detected by multiple 
pixels with lower energies



Conclusion

We have proposed an NN/ML approach to handle PPE 
and other artifacts in PCD data 

• Extract an optimal relationship between PCD data 
before and after degradation of any kind 

• Potentially, the NN/ML approach can outperform the 
existing patented methods for PCD data correction, 
and improve photon-counting CT image 
reconstruction
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