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Metal Artifacts 
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 Dental fillings, hip prostheses, surgical clips, ... 

 Beam hardening, noise, scatter,...   

 



Metal Artifact Reduction (MAR) 
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Metal Artifact Reduction (MAR) 
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 No standard MAR methods 

 Case-by-case 

 Complementary information   

 

 Original Image Beam Hardening Correction 

(BHC)[1] 

Linear Interpolation (LI) [2] 

[1] J. M. Verburg and J. Seco, "CT metal artifact reduction method correcting for beam hardening and missing projections," 

Physics in Medicine and Biology, vol. 57, pp. 2803-2818, 2012. 

 
[2] W. Kalender, R. Hebel, and J. Ebersberger, "Reduction of CT artifacts caused by metallic implants," Radiology, vol. 164, 

p. 576, 1987. 
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 Input: the original, BHC and LI image patches (64×64×3) 

 Target: reference image patches (64×64×1) 

 Convolutional kernel: 3×3  

 Padding: 1 

 ReLU 

 

 

 

Convolutional Neural Network (CNN) 

Configuration of the convolutional neural network for metal artifact reduction.  
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Illustration of the CNN image. 

Less artifacts! 
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 The CNN image: Residual artifacts 

 Thresholding based segmentation (k-means):  

 Bone 

 Soft tissue 

 Air  

 Soft tissue: set to a uniformed value. 

 

 

 

Tissue Processing 
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Comparison of sinogram completion. An ROI is enlarged and displayed with 

a narrower window. 



Experiments 
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 74 DICOM images  

 15 metal shapes 

 100 cases 

 Metal-free, metal-inserted, BHC and LI 

corrected images 

 Equi-angular fan-beam 

 120 kVp 

 Beam hardening and Poisson noise 

 

 

Build a Metal Artifacts Database 

 10,000 training data 

 Data: 80% for training, the rest for validation  

 Matlab with the MatConvNet Toolbox 

 GeForce GTX 970 GPU was used for acceleration 

 

 

Convolutional Neural Network (CNN) 

Training 



Experiments 
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 Case 1: hip prostheses 

 Case 2: fixation screws 

 Case 3: dental fillings 

 Same simulation parameters to that of cases in the database  

 

 

 

Numerical Simulation 

 A 59-year old female patient with a surgical clip  

 Siemens SOMATOM Sensation 16 CT scanner  

 120 kVp and 496 mAs 

 1160 projection views per rotation 

 672 detector bins in a raw 

 

 

 

Real Data 
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Case 1: bilateral hip prostheses.  

Simulation 

[1]      E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelriess, "Normalized metal artifact reduction 

(NMAR) in computed tomography," Medical Physics, vol. 37, pp. 5482-5493, 2010. 

Prior images: 
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Case 2: two fixation screws and a metal inserted in the shoulder blade. 
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Case 3: four dental fillings. 
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A 59 year-old female with diffused subarachnoid hemorrhage (highlighted by the 

red square). CT angiography demonstrated a left middle cerebral artery 

aneurysm, which was clipped. The display window is [-100 200] HU. 

Clinical Data 



Discussion 
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Effectiveness of the Tissue Processing 

Results obtained by directly adopting a CNN image as the prior image without 

the tissue processing step. (a)-(c) corresponds to the cases 1-3, respectively. 

 Reduce artifacts remained in the CNN image 



Discussion 
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Selection of Input Images (MAR Methods) 

Case 3: CNN and CNN-MAR results based 

on two- and five-channel input images. 

 2-channel: Original + LI 

 5-channel: Original + BHC 

+ LI + NMAR1 + NMAR2 

 Key: If new information is 

introduced? 



Discussion 

19 

Training Data and Epochs 

The convergence curves of CNN training in terms of energy of loss function versus training 

epochs. Left: Training data and validation data are selected from the same dataset. Right: 

Training data and validation data are from different cases in the dataset. 

 A good CNN image can be obtained after 200 epochs 

 CNN-MAR can be improved by introducing various cases as the 

training data 



Future Work 
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 Advantage: Semantic segmentation  

 Metal segmentation: The trained FCN could segment out metal 

implants more precisely 

1. Fully Convolutional Network (FCN)[1] based MAR 

2. ResNet[2] based MAR 

 Advantage: A more powerful CNN model  

 Simplify the proposed MAR framework: Due to the superior 

capacity of ResNet, the tissue processing can be carried out 

with the network. 

 

 [1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 

[2] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer 

vision and pattern recognition. 2016. 



Summary 

Thank You! 
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